On the Stability of a Mixed Type Functional Equation

Yang-Hi Lee
Department of Mathematics Education, Gongju National University of Education, Gongju, 314-711, Korea
e-mail : yanghi2@hanmail.net
Soon-Mo Jung*
Mathematics Section, College of Science and Technology, Hongik University, Sejong, 339-701, Korea
e-mail: smjung@hongik.ac.kr
Abstract. In this paper, we investigate the stability of the functional equation

$$
\begin{aligned}
& f(-x+y+z+w)+f(x-y+z+w)+f(x+y-z+w)+f(x+y+z-w) \\
& \quad=3 f(x)+f(-x)+3 f(y)+f(-y)+3 f(z)+f(-z)+3 f(w)+f(-w)
\end{aligned}
$$

by using the direct method in the sense of Hyers.

1. Introduction

In 1940, Ulam [19] gave a wide ranging talk before the mathematics club of the University of Wisconsin in which he discussed a number of important unsolved problems. Among those was the question concerning the stability of group homomorphisms: Let G_{1} be a group and let G_{2} be a metric group with the metric $d(\cdot, \cdot)$. Given $\varepsilon>0$, does there exist a $\delta>0$ such that if a function $h: G_{1} \rightarrow G_{2}$ satisfies the inequality $d(h(x y), h(x) h(y))<\delta$ for all $x, y \in G_{1}$, then there exists a homomorphism $H: G_{1} \rightarrow G_{2}$ with $d(h(x), H(x))<\varepsilon$ for all $x \in G_{1}$?

The Ulam's problem for the case of approximately additive functions was solved by Hyers [9] under the assumption that G_{1} and G_{2} are Banach spaces. Indeed, Hyers proved that each solution of the inequality $\|f(x+y)-f(x)-f(y)\| \leq \varepsilon$, for all x and y, can be approximated by an exact solution, say an additive function. In this case, the Cauchy additive functional equation, $f(x+y)=f(x)+f(y)$, is said to satisfy the Hyers-Ulam stability.

[^0]Rassias [18] attempted to weaken the condition for the bound of the norm of the Cauchy difference as follows

$$
\|f(x+y)-f(x)-f(y)\| \leq \varepsilon\left(\|x\|^{p}+\|y\|^{p}\right)
$$

and derived Hyers' theorem for the stability of the additive mapping as a special case. Thus in [18], a proof of the generalized Hyers-Ulam stability for the linear mapping between Banach spaces was obtained. In 1950, a special case of Rassias' theorem for the stability of the additive mapping was obtained by Aoki [1] (see also [8], [16], [18]).

The stability concept that was introduced by Rassias' theorem provided large influence to a number of mathematicians to develop the notion of what is known today with the term generalized Hyers-Ulam stability of the linear mappings. Since then, the stability of several functional equations has been extensively investigated by several mathematicians (see, for example, [7], [10], [11], [12], [14], [15] and the references therein).

Almost all subsequent proofs, in this very active area, have used the Hyers' idea from [9]. Namely, starting from the given mapping f, the solution F of a functional equation is explicitly constructed by

$$
F(x)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right) \quad \text { or } \quad F(x)=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)
$$

This method of Hyers is called the direct method. There are also other methods for proving the Hyers-Ulam stability of functional equations and differential equations. One of these methods is called the fixed point method that was applied for the first time by Baker (see [2] and also [3], [4], [5], [6], [17]).

Now, we consider the following functional equation

$$
\begin{align*}
& f(-x+y+z+w)+f(x-y+z+w)+f(x+y-z+w) \\
& \quad+f(x+y+z-w) \tag{1.1}\\
& \quad=3 f(x)+f(-x)+3 f(y)+f(-y)+3 f(z)+f(-z)+3 f(w)+f(-w),
\end{align*}
$$

which is called the mixed type functional equation. The mapping $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x^{2}+b x$ is a solution of this functional equation, where a, b are real constants. Every solution of (1.1) is called a quadratic-additive mapping.

In 1998, Jung [13] proved the stability of Eq. (1.1) by decomposing f into the odd and even parts. In his proof, it was necessary to let an additive mapping A and a quadratic mapping Q approximate the odd and even parts of f, respectively, and combine A and Q to prove the existence of a quadratic-additive mapping F which is close to the mapping f.

In this paper, we will prove the stability of the quadratic-additive functional equation (1.1) by making use of the direct method. Indeed, we will approximate the given mapping f by a solution F of Eq. (1.1) without decomposing f into its odd and even parts, while in the previous papers [13] the mapping f was decomposed into
the odd and even parts and they were separately approximated by the corresponding parts of a solution F of Eq. (1.1), respectively.

2. Main Results

Throughout this paper, let X be a (real or complex) linear space and Y a Banach space. For an arbitrarily fixed $p \in \mathbb{R}$, put $s=\operatorname{sign}(2-p)$ and $t=\operatorname{sign}(1-p)$.

For a given mapping $f: X \rightarrow Y$, we use the following abbreviations

$$
\begin{aligned}
& f_{o}(x):=\frac{f(x)-f(-x)}{2}, \\
& f_{e}(x):=\frac{f(x)+f(-x)}{2}, \\
& J_{n} f(x):=\frac{16^{-s n}}{2}\left(f\left(4^{s n} x\right)+f\left(-4^{s n} x\right)\right)+\frac{4^{-t n}}{2}\left(f\left(4^{t n} x\right)-f\left(-4^{t n} x\right)\right), \\
& J_{n}^{\prime} f(x):=\frac{4^{-s n}}{2}\left(f\left(2^{s n} x\right)+f\left(-2^{s n} x\right)\right)+\frac{2^{-t n}}{2}\left(f\left(2^{t n} x\right)-f\left(-2^{t n} x\right)\right), \\
& A f(x, y):=f(x+y)-f(x)-f(y), \\
& Q f(x, y):=f(x+y)+f(x-y)-2 f(x)-2 f(y), \\
& D f(x, y, z, w):=f(-x+y+z+w)+f(x-y+z+w)+f(x+y-z+w) \\
&+f(x+y+z-w)-3 f(x)-f(-x)-3 f(y)-f(-y) \\
&-3 f(z)-f(-z)-3 f(w)-f(-w)
\end{aligned}
$$

for all $x, y, z, w \in X$. Then we have

$$
\begin{aligned}
& D f_{e}(x, y, z, w)=\frac{1}{2} D f(x, y, z, w)+\frac{1}{2} D f(-x,-y,-z,-w) \\
& D f_{o}(x, y, z, w)=\frac{1}{2} D f(x, y, z, w)-\frac{1}{2} D f(-x,-y,-z,-w)
\end{aligned}
$$

for all $x, y, z, w \in X$.
If f is a solution of the functional equation $D f(x, y, z, w)=0$ for all $x, y, z, w \in$ X, then f is called a quadratic-additive mapping.

Theorem 2.1. A mapping $f: X \rightarrow Y$ is a solution of (1.1) if and only if f_{e} is a quadratic mapping and f_{o} is an additive mapping.
Proof. Let $f: X \rightarrow Y$ satisfy $D f(x, y, z, w)=0$ for all $x, y, z, w \in X$. Then we get

$$
\begin{aligned}
Q f_{e}(x, y) & =\frac{3 D f_{e}(x, y, 0,0)-D f_{e}(x, y, 0,0)}{4}=0 \\
A f_{o}(x, y) & =\frac{D f_{o}(x, y, 0,0)}{2}=0
\end{aligned}
$$

for all $x, y, z, w \in X$, i.e., f_{e} is a quadratic mapping and f_{o} is an additive mapping.

Conversely, assume that f_{e} is a quadratic mapping and f_{o} is an additive mapping. Then we get

$$
\begin{aligned}
D f(x, y, z, w)= & D f_{e}(x, y, z, w)+D f_{o}(x, y, z, w) \\
= & Q f_{e}(x+y, z-w)+Q f_{e}(x-y, z+w)+2 Q f_{e}(x, y) \\
& +2 Q f_{e}(z, w)+A f_{o}(x+y, z-w) \\
& +A f_{o}(z+w, x-y)+2 A f_{o}(x, y)+2 A f_{o}(z, w) \\
= & 0
\end{aligned}
$$

for all $x, y, z, w \in X$, i.e., f is a solution of (1.1).

In the following lemma, we will prove that a mapping f is also quadratic-additive provided $\operatorname{Df}(x, y, z, w)=0$ holds for x, y, z, w except zero.

Lemma 2.2. If a mapping $f: X \rightarrow Y$ satisfies $D f(x, y, z, w)=0$ for all $x, y, z, w \in$ $X \backslash\{0\}$, then f is a quadratic-additive mapping.
Proof. It is enough to show that $D f(x, y, z, w)=0$ for all $x, y, z, w \in X$. For an arbitrarily fixed $x \in X \backslash\{0\}$, we get

$$
\begin{aligned}
f(0)= & \frac{1}{3}\left(D f(x, x, x,-x)-\frac{1}{4} D f(2 x, 2 x, 2 x, 2 x)\right. \\
& \left.\quad-\frac{3}{4} D f(x, x, x, x)-\frac{1}{4} D f(-x,-x,-x,-x)\right) \\
= & 0
\end{aligned}
$$

Moreover, we have

$$
\begin{aligned}
D f & (x, y, z, 0) \\
= & D f\left(\frac{x}{2}, y, z,-\frac{x}{2}\right)+D f\left(\frac{x}{2}, y,-x, \frac{x}{2}\right)-D f\left(\frac{y}{2}, \frac{y}{2}, \frac{z}{2},-\frac{z}{2}\right) \\
& -D f\left(-\frac{y}{2}, \frac{y}{2}, \frac{z}{2}, \frac{z}{2}\right)-\frac{3}{4} D f\left(\frac{x}{2}, \frac{x}{2}, \frac{x}{2}, \frac{x}{2}\right)-\frac{1}{4} D f\left(-\frac{x}{2},-\frac{x}{2},-\frac{x}{2},-\frac{x}{2}\right) \\
& +\frac{3}{4} D f\left(\frac{y}{2}, \frac{y}{2}, \frac{y}{2}, \frac{y}{2}\right)+\frac{1}{4} D f\left(-\frac{y}{2},-\frac{y}{2},-\frac{y}{2},-\frac{y}{2}\right) \\
& +\frac{3}{4} D f\left(\frac{z}{2}, \frac{z}{2}, \frac{z}{2}, \frac{z}{2}\right)+\frac{1}{4} D f\left(-\frac{z}{2},-\frac{z}{2},-\frac{z}{2},-\frac{z}{2}\right) \\
= & 0
\end{aligned}
$$

for all $x, y, z \in X \backslash\{0\}$.

Furthermore, it is easy to prove that

$$
\begin{aligned}
D f(x, y, 0,0)= & D f\left(\frac{y}{2}, \frac{y}{2}, \frac{x}{2},-\frac{x}{2}\right)+D f\left(-\frac{y}{2}, \frac{y}{2}, \frac{x}{2}, \frac{x}{2}\right) \\
& -\frac{3}{4} D f\left(\frac{x}{2}, \frac{x}{2}, \frac{x}{2}, \frac{x}{2}\right)-\frac{1}{4} D f\left(-\frac{x}{2},-\frac{x}{2},-\frac{x}{2},-\frac{x}{2}\right) \\
& -\frac{3}{4} D f\left(\frac{y}{2}, \frac{y}{2}, \frac{y}{2}, \frac{y}{2}\right)-\frac{1}{4} D f\left(-\frac{y}{2},-\frac{y}{2},-\frac{y}{2},-\frac{y}{2}\right) \\
= & 0
\end{aligned}
$$

for all $x, y \in X \backslash\{0\}$. By considering the symmetry in the variables x, y, z, w, it completes the proof.

In the following theorem, we can prove the generalized Hyers-Ulam stability of the functional equation (1.1) by making use of the direct method.

Theorem 2.3. Let θ be a nonnegative constant. If a mapping $f: X \rightarrow Y$ satisfies the inequality

$$
\begin{equation*}
\|D f(x, y, z, w)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|w\|^{p}\right) \tag{2.1}
\end{equation*}
$$

for all $x, y, z, w \in X \backslash\{0\}$ with a real constant $p \notin\{1,2\}$, then there exists a unique quadratic-additive mapping $F: X \rightarrow Y$ such that

$$
\|f(x)-F(x)\| \leq \begin{cases}\frac{4 \theta\|x\|^{p}}{4^{p}-16} & (\text { for } p>2) \tag{2.2}\\ \left(\frac{4 \theta}{16-4^{p}}+\frac{4 \theta}{4^{p}-4}\right)\|x\|^{p} & (\text { for } 1<p<2) \\ \frac{4 \theta\|x\|^{p}}{4-4^{p}} & (\text { for } 0<p<1) \\ \frac{29}{15} \theta & (\text { for } p=0)\end{cases}
$$

for all $x \in X \backslash\{0\}$ and f is itself a quadratic-additive mapping provided $p<0$.
Proof. By a tedious calculation, we have

$$
\begin{aligned}
\|f(0)\|= & \frac{1}{3} \| D f\left(2^{n} x, 2^{n} x, 2^{n} x,-2^{n} x\right)-\frac{1}{4} D f\left(2^{n+1} x, 2^{n+1} x, 2^{n+1} x, 2^{n+1} x\right) \\
& \quad-\frac{3}{4} D f\left(2^{n} x, 2^{n} x, 2^{n} x, 2^{n} x\right)-\frac{1}{4} D f\left(-2^{n} x,-2^{n} x,-2^{n} x,-2^{n} x\right) \| \\
\leq & \frac{\left(8+2^{p}\right) 2^{n p} \theta\|x\|^{p}}{3}
\end{aligned}
$$

holds for any fixed $x \in X \backslash\{0\}$ and all integers n. Hence, we get $f(0)=0$ for $p \notin\{0,1,2\}$ and $\|f(0)\| \leq 3 \theta$ for $p=0$.

From the definitions of $J_{n} f(x)$ and $D f(x, y, z, w)$, applying a long calculation,
we get

$$
\begin{aligned}
& J_{n} f(x)-J_{n+1} f(x)=-\frac{1}{2}\left(16^{\tau_{-s, n}}(\right. D f\left(-4^{\tau_{s, n}} x, 4^{\tau_{s, n}} x, 4^{\tau_{s, n}} x, 4^{\tau_{s, n}} x\right) \\
&\left.+D f\left(4^{\tau_{s, n}} x,-4^{\tau_{s, n}} x,-4^{\tau_{s, n}} x,-4^{\tau_{s, n}} x\right)\right) s \\
&(2.3)+4^{\tau_{-t, n}}\left(D f\left(-4^{\tau_{t, n}} x, 4^{\tau_{t, n}} x, 4^{\tau_{t, n}} x, 4^{\tau_{t, n}} x\right)\right. \\
&\left.\left.-D f\left(4^{\tau_{t, n}} x,-4^{\tau_{t, n}} x,-4^{\tau_{t, n}} x,-4^{\tau_{t, n}} x\right)\right) t\right) \\
&+3 \cdot 16^{\tau_{-s, n}} f(0)
\end{aligned}
$$

for all $x \in X \backslash\{0\}$ and all nonnegative integers n, where $s=\operatorname{sign}(2-p), t=\operatorname{sign}(1-$ p), and $\tau_{k, n}$ are the integers defined by $\tau_{k, n}=k(n+1 / 2)-1 / 2$ for $k \in\{-1,1\}$.

It follows from (2.1) and (2.3) that

$$
\begin{aligned}
& \left\|J_{n} f(x)-J_{n+m} f(x)\right\| \\
& \left.\begin{array}{rl}
= & \sum_{j=n}^{n+m-1} \|
\end{array}\right] J_{j} f(x)-J_{j+1} f(x) \| \\
& \leq \frac{1}{2} \sum_{j=n}^{n+m-1}\left(\| 16^{\tau_{-s, j}} D f\left(-4^{\tau_{s, j}} x, 4^{\tau_{s, j}} x, 4^{\tau_{s, j}} x, 4^{\tau_{s, j}} x\right) s\right. \\
& \quad+4^{\tau_{-t, j}} D f\left(-4^{\tau_{t, j}} x, 4^{\tau_{t, j}} x, 4^{\tau_{t, j}} x, 4^{\tau_{t, j}} x\right) t \| \\
& \quad+\| 16^{\tau_{-s, j}} D f\left(4^{\tau_{s, j}} x,-4^{\tau_{s, j}} x,-4^{\tau_{s, j}} x,-4^{\tau_{s, j}} x\right) s \\
& \quad-4^{\tau_{-t, j}} D f\left(4^{\tau_{t, j}} x,-4^{\tau_{t, j}} x,-4^{\tau_{t, j}} x,-4^{\tau_{t, j}} x\right) t \| \\
& \left.\quad+\left\|6 \cdot 16^{\tau_{-s, j}} f(0)\right\|\right)
\end{aligned}
$$

$$
\leq \begin{cases}\sum_{j=n}^{n+m-1}\left(\frac{\theta}{4^{j}}+\frac{9 \theta}{16^{j+1}}\right) & (\text { for } p=0), \\ \sum_{j=n}^{n+m-1} 4^{-j} \theta\left\|4^{j} x\right\|^{p} & (\text { for } p<0 \text { or } 0<p<1), \\ \sum_{j=n}^{n+m-1}\left(\frac{\theta\left\|4^{j}\right\|^{p}}{4^{2 j+1}}+\frac{4^{j+1} \theta\|x\|^{p}}{4^{(j+1) p}}\right) & (\text { for } 1<p<2), \\ \sum_{j=n}^{n+m-1} 4^{2 j+1} \theta\left\|4^{-j-1} x\right\|^{p} & (\text { for } p>2)\end{cases}
$$

$$
\leq \begin{cases}\frac{4 \theta}{3 \cdot 4^{n}}+\frac{3 \theta}{5 \cdot 16^{n}} & (\text { for } p=0) \\ \frac{4^{n p} \theta\|x\|^{p}}{4^{n-1}\left(-4^{p}\right)} & (\text { for } p<0 \text { or } 0<p<1) \\ \frac{4^{n p} \theta\|x\|^{p}}{4^{2 n-1}\left(16-4^{p}\right)}+\frac{4^{n+1} \theta\|x\|^{p}}{4^{n p}\left(4^{p}-4\right)} & (\text { for } 1<p<2) \\ \frac{2^{n+1} \theta\|x\|^{p}}{4^{n p}\left(4^{p}-16\right)} & (\text { for } p>2)\end{cases}
$$

for all $x \in X \backslash\{0\}$. So, it is easy to show that the sequence $\left\{J_{n} f(x)\right\}$ is a Cauchy sequence for all $x \in X \backslash\{0\}$. Since Y is complete and $\lim _{n \rightarrow \infty} f(0)=0$, the sequence $\left\{J_{n} f(x)\right\}$ converges for all $x \in X$.

Hence, we can define a mapping $F: X \rightarrow Y$ by

$$
F(x):=\lim _{n \rightarrow \infty} J_{n} f(x)
$$

for all $x \in X$. Moreover, putting $n=0$ and letting $m \rightarrow \infty$ in (2.4), we obtain the inequality (2.2).

From the definition of F, we get

$$
\begin{aligned}
& D F(x, y, z, w) \\
= & \lim _{n \rightarrow \infty}\left(\frac{16^{-s n}}{2}\left(D f\left(4^{s n} x, 4^{s n} y, 4^{s n} z, 4^{s n} w\right)+D f\left(-4^{s n} x,-4^{s n} y,-4^{s n} z,-4^{s n} w\right)\right)\right. \\
& \left.\quad+\frac{4^{-t n}}{2}\left(D f\left(4^{t n} x, 4^{t n} y, 4^{t n} z, 4^{t n} w\right)-D f\left(-4^{t n} x,-4^{t n} y,-4^{t n} z,-4^{t n} w\right)\right)\right) \\
& \lim _{n \rightarrow \infty}\left(4^{-s n(2-p)}+4^{-t n(1-p)}\right) \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|w\|^{p}\right) \\
= & 0
\end{aligned}
$$

for all $x, y, z, w \in X \backslash\{0\}$. By Lemma 2.2, F is a quadratic-additive mapping.
Now, we show that F is unique. Let $F^{\prime}: X \rightarrow Y$ be another quadratic-additive mapping satisfying (2.2). It is easy to show that $F^{\prime}(0)=0$ for all quadratic-additive mapping F^{\prime}. It follows from (2.3) that

$$
\begin{aligned}
& F^{\prime}(x)-J_{n} F^{\prime}(x)=\sum_{j=0}^{n-1}\left(J_{j} F^{\prime}(x)-J_{j+1} F^{\prime}(x)\right) \\
& =-\frac{1}{2} \sum_{j=0}^{n-1}\left(1 6 ^ { \tau _ { - s , j } } \left(D F^{\prime}\left(4^{-\tau_{s, j}} x, 4^{\tau_{s, j}} x, 4^{\tau_{s, j}} x, 4^{\tau_{s, j}} x\right)\right.\right. \\
& \\
& \left.\quad+D F^{\prime}\left(4^{\tau_{s, j}} x,-4^{\tau_{s, j}} x,-4^{\tau_{s, j}} x,-4^{\tau_{s, j}} x\right)\right) s \\
& \\
& \quad+4^{\tau_{-t, j}}\left(D F^{\prime}\left(-4^{\tau_{t, j}} x, 4^{\tau_{t, j}} x, 4^{\tau_{t, j}} x, 4^{\tau_{t, j}} x\right)\right. \\
& \\
& \left.\left.\quad-D F^{\prime}\left(4^{\tau_{t, j}} x,-4^{\tau_{t, j}} x,-4^{\tau_{t, j}} x,-4^{\tau_{t, j}} x\right)\right) t\right)
\end{aligned}
$$

for all $n \in \mathbb{N}$ and for all $x \in X$.
Since F and F^{\prime} are quadratic-additive, replacing x with $4^{n} x$ in (2.2), we have

$$
\begin{aligned}
\left\|F(x)-F^{\prime}(x)\right\|= & \left\|J_{n} F(x)-J_{n} F^{\prime}(x)\right\| \\
\leq & \frac{16^{-s n}}{2}\left(\left\|(F-f)\left(4^{s n} x\right)\right\|+\left\|\left(f-F^{\prime}\right)\left(4^{s n} x\right)\right\|\right. \\
& \left.\quad+\left\|(F-f)\left(-4^{s n} x\right)\right\|+\left\|\left(f-F^{\prime}\right)\left(-4^{s n} x\right)\right\|\right) \\
& \quad+\frac{4^{-t n}}{2}\left(\left\|(F-f)\left(4^{t n} x\right)\right\|+\left\|\left(F^{\prime}-f\right)\left(4^{t n} x\right)\right\|\right. \\
& \left.\quad+\left\|(F-f)\left(-4^{t n} x\right)\right\|+\left\|\left(F^{\prime}-f\right)\left(-4^{t n} x\right)\right\|\right) \\
\leq & \left(\frac{8 \theta}{\left|16-4^{p}\right|}+\frac{8 \theta}{\left|4^{p}-4\right|}\right)\left(4^{-s n(2-p)}+4^{-\operatorname{tn}(1-p)}\right)\|x\|^{p}
\end{aligned}
$$

for all $x \in X \backslash\{0\}$ and all positive integers n provided $p \neq 0$. We also have

$$
\left\|F(x)-F^{\prime}(x)\right\| \leq \frac{49}{15}\left(16^{-n}+4^{-n}\right) \theta
$$

for all $x \in X \backslash\{0\}$ and all positive integers n provided $p=0$.
Taking the limit in the above inequality as $n \rightarrow \infty$, we can conclude that $F(x)=F^{\prime}(x)$ for all $x \in X$. This proves the uniqueness of F. Since

$$
\begin{aligned}
& \|f(x)-F(x)\| \\
& \leq\|D f((3 k-1) x, k x, k x, k x)-D F((3 k-1) x, k x, k x, k x)\| \\
& \quad+3\|(F-f)((4 k-1) x)\|+3\|(f-F)((3 k-1) x)\| \\
& \quad+\|(f-F)((1-3 k) x)\|+9\|(f-F)(k x)\|+3\|(f-F)(-k x)\| \\
& \leq \\
& \leq \\
& \quad\left((3 k-1)^{p}+3 k^{p}+\frac{4\left(3(4 k-1)^{p}+4(3 k-1)^{p}+12 k^{p}\right)}{4-4^{p}}\right) \theta\|x\|^{p}
\end{aligned}
$$

holds for all $x \in X \backslash\{0\}$ and all $k \in \mathbb{R}$, we conclude that $f(x)=F(x)$ for all $x \in X \backslash\{0\}$ provided $p<0$ by letting $k \rightarrow \infty$ in the above inequality. Since $f(0)=0, f$ is itself a quadratic-additive mapping.

In the case of $p \geq 0, x, y, z, w$ can take 0 in the inequality (2.1). For this case, we obtain a little bit different result from Theorem 2.3.

Theorem 2.4. Let θ be a nonnegative constant. If a mapping $f: X \rightarrow Y$ satisfies the inequality

$$
\begin{equation*}
\|D f(x, y, z, w)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}+\|z\|^{p}+\|w\|^{p}\right) \tag{2.5}
\end{equation*}
$$

for all $x, y, z, w \in X$ with a nonnegative real constant $p \notin\{1,2\}$, then there exists a unique quadratic-additive mapping $F: X \rightarrow Y$ such that

$$
\|f(x)-F(x)\| \leq \begin{cases}\frac{\theta\|x\|^{p}}{2^{p}-4} & (\text { for } p>2) \tag{2.6}\\ \left(\frac{\theta}{4-2^{p}}+\frac{\theta}{2^{p}-2}\right)\|x\|^{p} & (\text { for } 1<p<2) \\ \frac{\theta\|x\|^{p}}{2-2^{p}} & (\text { for } 0<p<1) \\ \frac{19}{9} \theta & (\text { for } p=0)\end{cases}
$$

for all $x \in X$.
Proof. Since

$$
\|f(0)\|=\left\|\frac{1}{12} D f(0,0,0,0)\right\| \leq \frac{\|0\|^{p} \theta}{3}
$$

we get $f(0)=0$ for $p \notin\{0,1,2\}$ and $\|f(0)\| \leq \theta / 3$ for $p=0$. From the definitions of $J_{n} f(x)$ and $D f(x, y, z, w)$, we get

$$
\begin{align*}
& J_{n}^{\prime} f(x)-J_{n+1}^{\prime} f(x) \\
& =-\frac{1}{4}\left(4^{\tau_{-s, n}}\left(D f\left(2^{\tau_{s, n}} x, 2^{\tau_{s, n}} x, 0,0\right)+D f\left(-2^{\tau_{s, n}} x,-2^{\tau_{s, n}} x, 0,0\right)\right) s\right. \\
& \left.\quad \quad+2^{\tau_{-t, n}}\left(D f\left(2^{\tau_{t, n}} x, 2^{\tau_{t, n}} x, 0,0\right)-D f\left(-2^{\tau_{t, n}} x,-2^{\tau_{t, n}} x, 0,0\right)\right) t\right) \tag{2.7}\\
& \quad+4^{\tau_{-s, n}+1} f(0)
\end{align*}
$$

for all $x \in X$ and all nonnegative integers n, where $s=\operatorname{sign}(2-p), t=\operatorname{sign}(1-p)$, and $\tau_{k, n}$ are the integers defined by $\tau_{k, n}=k(n+1 / 2)-1 / 2$ for $k \in\{-1,1\}$.

It follows from (2.5) and (2.7) that

$$
\begin{align*}
& \left\|J_{n}^{\prime} f(x)-J_{n+m}^{\prime} f(x)\right\| \\
& \begin{aligned}
=\sum_{j=n}^{n+m-1}
\end{aligned}\left\|J_{j}^{\prime} f(x)-J_{j+1}^{\prime} f(x)\right\| \\
& \leq \frac{1}{4} \sum_{j=n}^{n+m-1}\left(\left\|4^{\tau_{-s, j}} D f\left(2^{\tau_{s, j}} x, 2^{\tau_{s, j}} x, 0,0\right) s+2^{\tau_{-t, j}} D f\left(2^{\tau_{t, j}} x, 2^{\tau_{t, j}} x, 0,0\right) t\right\|\right. \\
& \quad+\| 4^{\tau_{-s, j}} D f\left(-2^{\tau_{s, j}} x,-2^{\tau_{s, j}} x, 0,0\right) s \\
& \quad-2^{\tau_{-t, j}} D f\left(-2^{\tau_{t, j}} x,-2^{\tau_{t, j}} x, 0,0\right) t \| \\
& \left.\quad+\left\|16 \cdot 4^{\tau_{-s, j}} f(0)\right\|\right) \tag{2.8}
\end{align*}
$$

$$
\leq \begin{cases}\sum_{j=n}^{n+m-1}\left(\frac{\theta}{2^{j}}+\frac{\theta}{3 \cdot 4^{j}}\right) & \text { (for } p=0 \text {), } \\ \sum_{j=n}^{n+m-m} 2^{j-j-1} \theta\left\|2^{j} x\right\|^{p} & \text { (for } 0<p<1 \text {), } \\ \sum_{j=n}^{n+m-1}\left(2^{-2 j-2} \theta\left\|2^{j} x\right\|^{p}+2^{j} \theta\left\|2^{-j-1} x\right\|^{p}\right) & (\text { for } 1<p<2), \\ \sum_{j=n}^{n+m-1} 2^{2 j} \theta\left\|2^{-j-1} x\right\|^{p} & (\text { for } p>2)\end{cases}
$$

$$
\leq \begin{cases}\frac{2 \theta}{2^{n}+\frac{\theta}{9.4 n^{n}}} & (\text { for } p=0), \\ \frac{2^{p} p \theta \mid x \|^{p}}{2^{n}\left(\|-x^{p}\right)} & \text { (for } 0<p<1), \\ \frac{2^{n p}\| \| x \|^{p}}{4^{n}\left(4-2^{p}\right)}+\frac{2^{n} \theta\|x\|^{p}}{2^{n+(}\left(2^{p}-2\right)} & (\text { for } 1<p<2), \\ \frac{4^{n} \theta\| \| \|^{p}}{2^{n p}\left(2^{p}-4\right)} & (\text { for } p>2)\end{cases}
$$

for all $x \in X$.
So, it is easy to show that the sequence $\left\{J_{n}^{\prime} f(x)\right\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\left\{J_{n}^{\prime} f(x)\right\}$ converges for all $x \in X$. Hence, we can define a mapping $F: X \rightarrow Y$ by

$$
F(x):=\lim _{n \rightarrow \infty} J_{n}^{\prime} f(x)
$$

for all $x \in X$. Moreover, putting $n=0$ and letting $m \rightarrow \infty$ in (2.8), we get the inequality (2.6). The remaining part of the proof is similar to the proof of Theorem 2.3.

Acknowledgements. Soon-Mo Jung was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2013R1A1A2005557).

References

[1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2(1950), 64-66.
[2] J. A. Baker, The stability of certain functional equations, Proc. Amer. Math. Soc., 112(3)(1991), 729-732.
[3] L. Cădariu and V. Radu, Fixed points and the stability of Jensen's functional equation, J. Inequal. Pure and Appl. Math., 4(1)(2003), Art. 4, http://jipam.vu.edu.au
[4] L. Cădariu and V. Radu, Fixed points and the stability of quadratic functional equations, An. Univ. Timisoara Ser. Mat.-Inform., 41(2003), 25-48.
[5] L. Cădariu and V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Math. Ber., 346(2004), 43-52.
[6] K. Ciepliński, Applications of fixed point theorems to the Hyers-Ulam stability of functional equations - a survey, Ann. Funct. Anal., 3(1)(2012), 151-164.
[7] S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, Singapore (2002).
[8] P. Enflo and M. S. Moslehian, An interview with Th. M. Rassias, Banach J. Math. Anal., 1(2)(2007), 252-260.
[9] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27(1941), 222-224.
[10] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations of Several Variables, Birkhäuser, Basel (1998).
[11] S.-M. Jung, On the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 204(1996), 221-226.
[12] S.-M. Jung, Hyers-Ulam-Rassias stability of Jensen's equation and its application, Proc. Amer. Math. Soc., 126(1998), 3137-3143.
[13] S.-M. Jung, On the Hyers-Ulam stability of the functional equations that have the quadratic property, J. Math. Anal. Appl., 222(1998), 126-137.
[14] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer Optimization and Its Applications Vol. 48, Springer, New York (2011).
[15] M. Mirzavaziri and M. S. Moslehian, A fixed point approach to stability of a quadratic equation, Bull. Braz. Math. Soc. (N. S.), 37(3)(2006), 361-376.
[16] M. S. Moslehian and Th. M. Rassias, Stability of functional equations in nonArchimedean spaces, Appl. Anal. Discrete Math., 1(2)(2007), 325-334.
[17] V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory, 4(2003), 91-96.
[18] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72(1978), 297-300.
[19] S. M. Ulam, Problems in Modern Mathematics, Wiley, New York (1964).

[^0]: * Corresponding Author.

 Received August 10, 2013; accepted September 30, 2013.
 2010 Mathematics Subject Classification: 39B82, 39B52.
 Key words and phrases: generalized Hyers-Ulam stability, Hyers-Ulam stability, direct method, mixed type functional equation.

