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Abstract. In this paper, we investigate the stability of the functional equation

f(−x+ y + z + w) + f(x− y + z + w) + f(x+ y − z + w) + f(x+ y + z − w)

= 3f(x) + f(−x) + 3f(y) + f(−y) + 3f(z) + f(−z) + 3f(w) + f(−w)

by using the direct method in the sense of Hyers.

1. Introduction

In 1940, Ulam [19] gave a wide ranging talk before the mathematics club of
the University of Wisconsin in which he discussed a number of important unsolved
problems. Among those was the question concerning the stability of group homo-
morphisms: Let G1 be a group and let G2 be a metric group with the metric d(·, ·).
Given ε > 0, does there exist a δ > 0 such that if a function h : G1 → G2 sat-
isfies the inequality d(h(xy), h(x)h(y)) < δ for all x, y ∈ G1, then there exists a
homomorphism H : G1 → G2 with d(h(x),H(x)) < ε for all x ∈ G1?

The Ulam’s problem for the case of approximately additive functions was solved
by Hyers [9] under the assumption that G1 and G2 are Banach spaces. Indeed, Hyers
proved that each solution of the inequality ∥f(x + y)− f(x) − f(y)∥ ≤ ε, for all x
and y, can be approximated by an exact solution, say an additive function. In this
case, the Cauchy additive functional equation, f(x + y) = f(x) + f(y), is said to
satisfy the Hyers-Ulam stability.
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Rassias [18] attempted to weaken the condition for the bound of the norm of
the Cauchy difference as follows

∥f(x+ y)− f(x)− f(y)∥ ≤ ε
(
∥x∥p + ∥y∥p

)
and derived Hyers’ theorem for the stability of the additive mapping as a special
case. Thus in [18], a proof of the generalized Hyers-Ulam stability for the linear
mapping between Banach spaces was obtained. In 1950, a special case of Rassias’
theorem for the stability of the additive mapping was obtained by Aoki [1] (see also
[8], [16], [18]).

The stability concept that was introduced by Rassias’ theorem provided large
influence to a number of mathematicians to develop the notion of what is known
today with the term generalized Hyers-Ulam stability of the linear mappings. Since
then, the stability of several functional equations has been extensively investigated
by several mathematicians (see, for example, [7], [10], [11], [12], [14], [15] and the
references therein).

Almost all subsequent proofs, in this very active area, have used the Hyers’ idea
from [9]. Namely, starting from the given mapping f , the solution F of a functional
equation is explicitly constructed by

F (x) = lim
n→∞

1

2n
f(2nx) or F (x) = lim

n→∞
2nf

( x

2n

)
.

This method of Hyers is called the direct method. There are also other methods for
proving the Hyers-Ulam stability of functional equations and differential equations.
One of these methods is called the fixed point method that was applied for the first
time by Baker (see [2] and also [3], [4], [5], [6], [17]).

Now, we consider the following functional equation

f(−x+ y + z + w) + f(x− y + z + w) + f(x+ y − z + w)

+ f(x+ y + z − w)(1.1)

= 3f(x) + f(−x) + 3f(y) + f(−y) + 3f(z) + f(−z) + 3f(w) + f(−w),

which is called the mixed type functional equation. The mapping f : R → R
defined by f(x) = ax2 + bx is a solution of this functional equation, where a, b are
real constants. Every solution of (1.1) is called a quadratic-additive mapping.

In 1998, Jung [13] proved the stability of Eq. (1.1) by decomposing f into the
odd and even parts. In his proof, it was necessary to let an additive mapping A and
a quadratic mapping Q approximate the odd and even parts of f , respectively, and
combine A and Q to prove the existence of a quadratic-additive mapping F which
is close to the mapping f .

In this paper, we will prove the stability of the quadratic-additive functional
equation (1.1) by making use of the direct method. Indeed, we will approximate
the given mapping f by a solution F of Eq. (1.1) without decomposing f into its odd
and even parts, while in the previous papers [13] the mapping f was decomposed into



A Mixed Type Functional Equation 93

the odd and even parts and they were separately approximated by the corresponding
parts of a solution F of Eq. (1.1), respectively.

2. Main Results

Throughout this paper, letX be a (real or complex) linear space and Y a Banach
space. For an arbitrarily fixed p ∈ R, put s = sign(2− p) and t = sign(1− p).

For a given mapping f : X → Y , we use the following abbreviations

fo(x) :=
f(x)− f(−x)

2
,

fe(x) :=
f(x) + f(−x)

2
,

Jnf(x) :=
16−sn

2
(f(4snx) + f(−4snx)) +

4−tn

2

(
f(4tnx)− f(−4tnx)

)
,

J ′
nf(x) :=

4−sn

2
(f(2snx) + f(−2snx)) +

2−tn

2

(
f(2tnx)− f(−2tnx)

)
,

Af(x, y) := f(x+ y)− f(x)− f(y),

Qf(x, y) := f(x+ y) + f(x− y)− 2f(x)− 2f(y),

Df(x, y, z, w) := f(−x+ y + z + w) + f(x− y + z + w) + f(x+ y − z + w)

+ f(x+ y + z − w)− 3f(x)− f(−x)− 3f(y)− f(−y)

− 3f(z)− f(−z)− 3f(w)− f(−w)

for all x, y, z, w ∈ X. Then we have

Dfe(x, y, z, w) =
1

2
Df(x, y, z, w) +

1

2
Df(−x,−y,−z,−w),

Dfo(x, y, z, w) =
1

2
Df(x, y, z, w)− 1

2
Df(−x,−y,−z,−w)

for all x, y, z, w ∈ X.
If f is a solution of the functional equation Df(x, y, z, w) = 0 for all x, y, z, w ∈

X, then f is called a quadratic-additive mapping.

Theorem 2.1. A mapping f : X → Y is a solution of (1.1) if and only if fe is a
quadratic mapping and fo is an additive mapping.

Proof. Let f : X → Y satisfy Df(x, y, z, w) = 0 for all x, y, z, w ∈ X. Then we get

Qfe(x, y) =
3Dfe(x, y, 0, 0)−Dfe(x, y, 0, 0)

4
= 0,

Afo(x, y) =
Dfo(x, y, 0, 0)

2
= 0

for all x, y, z, w ∈ X, i.e., fe is a quadratic mapping and fo is an additive mapping.
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Conversely, assume that fe is a quadratic mapping and fo is an additive map-
ping. Then we get

Df(x, y, z, w) = Dfe(x, y, z, w) +Dfo(x, y, z, w)

= Qfe(x+ y, z − w) +Qfe(x− y, z + w) + 2Qfe(x, y)

+ 2Qfe(z, w) +Afo(x+ y, z − w)

+Afo(z + w, x− y) + 2Afo(x, y) + 2Afo(z, w)

= 0

for all x, y, z, w ∈ X, i.e., f is a solution of (1.1). 2

In the following lemma, we will prove that a mapping f is also quadratic-additive
provided Df(x, y, z, w) = 0 holds for x, y, z, w except zero.

Lemma 2.2. If a mapping f : X → Y satisfies Df(x, y, z, w) = 0 for all x, y, z, w ∈
X\{0}, then f is a quadratic-additive mapping.

Proof. It is enough to show that Df(x, y, z, w) = 0 for all x, y, z, w ∈ X. For an
arbitrarily fixed x ∈ X\{0}, we get

f(0) =
1

3

(
Df(x, x, x,−x)− 1

4
Df(2x, 2x, 2x, 2x)

− 3

4
Df(x, x, x, x)− 1

4
Df(−x,−x,−x,−x)

)
= 0.

Moreover, we have

Df(x, y, z, 0)

= Df

(
x

2
, y, z,−x

2

)
+Df

(
x

2
, y,−x,

x

2

)
−Df

(
y

2
,
y

2
,
z

2
,−z

2

)
−Df

(
− y

2
,
y

2
,
z

2
,
z

2

)
− 3

4
Df

(
x

2
,
x

2
,
x

2
,
x

2

)
− 1

4
Df

(
− x

2
,−x

2
,−x

2
,−x

2

)
+

3

4
Df

(
y

2
,
y

2
,
y

2
,
y

2

)
+

1

4
Df

(
− y

2
,−y

2
,−y

2
,−y

2

)
+

3

4
Df

(
z

2
,
z

2
,
z

2
,
z

2

)
+

1

4
Df

(
− z

2
,−z

2
,−z

2
,−z

2

)
= 0

for all x, y, z ∈ X\{0}.
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Furthermore, it is easy to prove that

Df(x, y, 0, 0) = Df

(
y

2
,
y

2
,
x

2
,−x

2

)
+Df

(
− y

2
,
y

2
,
x

2
,
x

2

)
− 3

4
Df

(
x

2
,
x

2
,
x

2
,
x

2

)
− 1

4
Df

(
− x

2
,−x

2
,−x

2
,−x

2

)
− 3

4
Df

(
y

2
,
y

2
,
y

2
,
y

2

)
− 1

4
Df

(
− y

2
,−y

2
,−y

2
,−y

2

)
= 0

for all x, y ∈ X\{0}. By considering the symmetry in the variables x, y, z, w, it
completes the proof. 2

In the following theorem, we can prove the generalized Hyers-Ulam stability of
the functional equation (1.1) by making use of the direct method.

Theorem 2.3. Let θ be a nonnegative constant. If a mapping f : X → Y satisfies
the inequality

∥Df(x, y, z, w)∥ ≤ θ
(
∥x∥p + ∥y∥p + ∥z∥p + ∥w∥p

)
(2.1)

for all x, y, z, w ∈ X\{0} with a real constant p ̸∈ {1, 2}, then there exists a unique
quadratic-additive mapping F : X → Y such that

∥f(x)− F (x)∥ ≤



4θ∥x∥p

4p−16 (for p > 2),(
4θ

16−4p + 4θ
4p−4

)
∥x∥p (for 1 < p < 2),

4θ∥x∥p

4−4p (for 0 < p < 1),
29
15θ (for p = 0)

(2.2)

for all x ∈ X\{0} and f is itself a quadratic-additive mapping provided p < 0.

Proof. By a tedious calculation, we have

∥f(0)∥ =
1

3

∥∥∥∥Df
(
2nx, 2nx, 2nx,−2nx

)
− 1

4
Df
(
2n+1x, 2n+1x, 2n+1x, 2n+1x

)
− 3

4
Df
(
2nx, 2nx, 2nx, 2nx

)
− 1

4
Df
(
− 2nx,−2nx,−2nx,−2nx

)∥∥∥∥
≤ (8 + 2p)2npθ∥x∥p

3

holds for any fixed x ∈ X\{0} and all integers n. Hence, we get f(0) = 0 for
p ̸∈ {0, 1, 2} and ∥f(0)∥ ≤ 3θ for p = 0.

From the definitions of Jnf(x) and Df(x, y, z, w), applying a long calculation,
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we get

Jnf(x)− Jn+1f(x) = − 1

2

(
16τ−s,n

(
Df(−4τs,nx, 4τs,nx, 4τs,nx, 4τs,nx)

+Df(4τs,nx,−4τs,nx,−4τs,nx,−4τs,nx)
)
s

+ 4τ−t,n
(
Df(−4τt,nx, 4τt,nx, 4τt,nx, 4τt,nx)(2.3)

−Df(4τt,nx,−4τt,nx,−4τt,nx,−4τt,nx)
)
t
)

+ 3 · 16τ−s,nf(0)

for all x ∈ X\{0} and all nonnegative integers n, where s = sign(2−p), t = sign(1−
p), and τk,n are the integers defined by τk,n = k(n+ 1/2)− 1/2 for k ∈ {−1, 1}.

It follows from (2.1) and (2.3) that

∥Jnf(x)− Jn+mf(x)∥

=
n+m−1∑
j=n

∥Jjf(x)− Jj+1f(x)∥

≤ 1

2

n+m−1∑
j=n

(∥∥16τ−s,jDf(−4τs,jx, 4τs,jx, 4τs,jx, 4τs,jx)s

+ 4τ−t,jDf(−4τt,jx, 4τt,jx, 4τt,jx, 4τt,jx)t
∥∥

+
∥∥16τ−s,jDf(4τs,jx,−4τs,jx,−4τs,jx,−4τs,jx)s

− 4τ−t,jDf(4τt,jx,−4τt,jx,−4τt,jx,−4τt,jx)t
∥∥

+ ∥6 · 16τ−s,jf(0)∥
)

(2.4)

≤



∑n+m−1
j=n

(
θ
4j + 9θ

16j+1

)
(for p = 0),∑n+m−1

j=n 4−jθ∥4jx∥p (for p < 0 or 0 < p < 1),∑n+m−1
j=n

(
θ∥4jx∥p

42j+1 + 4j+1θ∥x∥p

4(j+1)p

)
(for 1 < p < 2),∑n+m−1

j=n 42j+1θ∥4−j−1x∥p (for p > 2)

≤



4θ
3·4n + 3θ

5·16n (for p = 0),
4npθ∥x∥p

4n−1(4−4p) (for p < 0 or 0 < p < 1),

4npθ∥x∥p

42n−1(16−4p) +
4n+1θ∥x∥p

4np(4p−4) (for 1 < p < 2),

42n+1θ∥x∥p

4np(4p−16) (for p > 2)

for all x ∈ X\{0}. So, it is easy to show that the sequence {Jnf(x)} is a Cauchy
sequence for all x ∈ X\{0}. Since Y is complete and limn→∞ f(0) = 0, the sequence
{Jnf(x)} converges for all x ∈ X.

Hence, we can define a mapping F : X → Y by

F (x) := lim
n→∞

Jnf(x)
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for all x ∈ X. Moreover, putting n = 0 and letting m → ∞ in (2.4), we obtain the
inequality (2.2).

From the definition of F , we get

DF (x, y, z, w)

= lim
n→∞

(
16−sn

2

(
Df(4snx, 4sny, 4snz, 4snw) +Df(−4snx,−4sny,−4snz,−4snw)

)
+

4−tn

2

(
Df(4tnx, 4tny, 4tnz, 4tnw)−Df(−4tnx,−4tny,−4tnz,−4tnw)

))
≤ lim

n→∞

(
4−sn(2−p) + 4−tn(1−p)

)
θ
(
∥x∥p + ∥y∥p + ∥z∥p + ∥w∥p

)
= 0

for all x, y, z, w ∈ X\{0}. By Lemma 2.2, F is a quadratic-additive mapping.
Now, we show that F is unique. Let F ′ : X → Y be another quadratic-additive

mapping satisfying (2.2). It is easy to show that F ′(0) = 0 for all quadratic-additive
mapping F ′. It follows from (2.3) that

F ′(x)− JnF
′(x) =

n−1∑
j=0

(JjF
′(x)− Jj+1F

′(x))

= − 1

2

n−1∑
j=0

(
16τ−s,j

(
DF ′(4−τs,jx, 4τs,jx, 4τs,jx, 4τs,jx)

+DF ′(4τs,jx,−4τs,jx,−4τs,jx,−4τs,jx)
)
s

+ 4τ−t,j
(
DF ′(−4τt,jx, 4τt,jx, 4τt,jx, 4τt,jx)

−DF ′(4τt,jx,−4τt,jx,−4τt,jx,−4τt,jx)
)
t
)

= 0

for all n ∈ N and for all x ∈ X.
Since F and F ′ are quadratic-additive, replacing x with 4nx in (2.2), we have

∥F (x)− F ′(x)∥ = ∥JnF (x)− JnF
′(x)∥

≤ 16−sn

2

(
∥(F − f)(4snx)∥+ ∥(f − F ′)(4snx)∥

+ ∥(F − f)(−4snx)∥+ ∥(f − F ′)(−4snx)∥
)

+
4−tn

2

(
∥(F − f)(4tnx)∥+ ∥(F ′ − f)(4tnx)∥

+ ∥(F − f)(−4tnx)∥+ ∥(F ′ − f)(−4tnx)∥
)

≤
(

8θ

|16− 4p|
+

8θ

|4p − 4|

)(
4−sn(2−p) + 4−tn(1−p)

)
∥x∥p
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for all x ∈ X\{0} and all positive integers n provided p ̸= 0. We also have

∥F (x)− F ′(x)∥ ≤ 49

15

(
16−n + 4−n

)
θ

for all x ∈ X\{0} and all positive integers n provided p = 0.

Taking the limit in the above inequality as n → ∞, we can conclude that
F (x) = F ′(x) for all x ∈ X. This proves the uniqueness of F . Since

∥f(x)− F (x)∥
≤ ∥Df((3k − 1)x, kx, kx, kx)−DF ((3k − 1)x, kx, kx, kx)∥

+ 3∥(F − f)((4k − 1)x)∥+ 3∥(f − F )((3k − 1)x)∥
+ ∥(f − F )((1− 3k)x)∥+ 9∥(f − F )(kx)∥+ 3∥(f − F )(−kx)∥

≤

(
(3k − 1)p + 3kp +

4
(
3(4k − 1)p + 4(3k − 1)p + 12kp

)
4− 4p

)
θ∥x∥p

holds for all x ∈ X\{0} and all k ∈ R, we conclude that f(x) = F (x) for all
x ∈ X\{0} provided p < 0 by letting k → ∞ in the above inequality. Since
f(0) = 0, f is itself a quadratic-additive mapping. 2

In the case of p ≥ 0, x, y, z, w can take 0 in the inequality (2.1). For this case,
we obtain a little bit different result from Theorem 2.3.

Theorem 2.4. Let θ be a nonnegative constant. If a mapping f : X → Y satisfies
the inequality

(2.5) ∥Df(x, y, z, w)∥ ≤ θ
(
∥x∥p + ∥y∥p + ∥z∥p + ∥w∥p

)
for all x, y, z, w ∈ X with a nonnegative real constant p ̸∈ {1, 2}, then there exists a
unique quadratic-additive mapping F : X → Y such that

∥f(x)− F (x)∥ ≤



θ∥x∥p

2p−4 (for p > 2),(
θ

4−2p + θ
2p−2

)
∥x∥p (for 1 < p < 2),

θ∥x∥p

2−2p (for 0 < p < 1),
19
9 θ (for p = 0)

(2.6)

for all x ∈ X.

Proof. Since

∥f(0)∥ =

∥∥∥∥ 1

12
Df(0, 0, 0, 0)

∥∥∥∥ ≤ ∥0∥pθ
3

,
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we get f(0) = 0 for p ̸∈ {0, 1, 2} and ∥f(0)∥ ≤ θ/3 for p = 0. From the definitions
of Jnf(x) and Df(x, y, z, w), we get

J ′
nf(x)− J ′

n+1f(x)

= − 1

4

(
4τ−s,n

(
Df(2τs,nx, 2τs,nx, 0, 0) +Df(−2τs,nx,−2τs,nx, 0, 0)

)
s

+ 2τ−t,n
(
Df(2τt,nx, 2τt,nx, 0, 0)−Df(−2τt,nx,−2τt,nx, 0, 0)

)
t
)

(2.7)

+ 4τ−s,n+1f(0)

for all x ∈ X and all nonnegative integers n, where s = sign(2− p), t = sign(1− p),
and τk,n are the integers defined by τk,n = k(n+ 1/2)− 1/2 for k ∈ {−1, 1}.

It follows from (2.5) and (2.7) that

∥J ′
nf(x)− J ′

n+mf(x)∥

=
n+m−1∑
j=n

∥J ′
jf(x)− J ′

j+1f(x)∥

≤ 1

4

n+m−1∑
j=n

(∥∥4τ−s,jDf
(
2τs,jx, 2τs,jx, 0, 0

)
s+ 2τ−t,jDf

(
2τt,jx, 2τt,jx, 0, 0

)
t
∥∥

+
∥∥4τ−s,jDf

(
− 2τs,jx,−2τs,jx, 0, 0

)
s

− 2τ−t,jDf
(
− 2τt,jx,−2τt,jx, 0, 0

)
t
∥∥

+
∥∥16 · 4τ−s,jf(0)

∥∥)(2.8)

≤



∑n+m−1
j=n

(
θ
2j + θ

3·4j
)

(for p = 0),∑n+m−1
j=n 2−j−1θ∥2jx∥p (for 0 < p < 1),∑n+m−1
j=n

(
2−2j−2θ∥2jx∥p + 2jθ∥2−j−1x∥p

)
(for 1 < p < 2),∑n+m−1

j=n 22jθ∥2−j−1x∥p (for p > 2)

≤



2θ
2n + θ

9·4n (for p = 0),
2npθ∥x∥p

2n(2−2p) (for 0 < p < 1),

2npθ∥x∥p

4n(4−2p) +
2nθ∥x∥p

2np(2p−2) (for 1 < p < 2),

4nθ∥x∥p

2np(2p−4) (for p > 2)

for all x ∈ X.
So, it is easy to show that the sequence {J ′

nf(x)} is a Cauchy sequence for all
x ∈ X. Since Y is complete, the sequence {J ′

nf(x)} converges for all x ∈ X. Hence,
we can define a mapping F : X → Y by

F (x) := lim
n→∞

J ′
nf(x)
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for all x ∈ X. Moreover, putting n = 0 and letting m → ∞ in (2.8), we get the
inequality (2.6). The remaining part of the proof is similar to the proof of Theorem
2.3. 2
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