KYUNGPOOK Math. J. 55(2015), 51-62 http://dx.doi.org/10.5666/KMJ.2015.55.1.51 pISSN 1225-6951 eISSN 0454-8124 © Kyungpook Mathematical Journal

Fuzzy Prime Ideals of Pseudo-LBCK-algebras

Grzegorz Dymek

Institute of Mathematics and Computer Science, The John Paul II Catholic University of Lublin, Konstantynów 1H, 20-708 Lublin, Poland e-mail: gdymek@o2.pl

ANDRZEJ WALENDZIAK*

Institute of Mathematics and Physics, Siedlce University, 3 Maja 54, 08-110 Siedlce, Poland e-mail: walent@interia.pl

ABSTRACT. Pseudo-LBCK-algebras are commutative pseudo-BCK-algebras with relative cancellation property. In the paper, we introduce fuzzy prime ideals in pseudo-LBCK-algebras and investigate some of their properties. We also give various characterizations of prime ideals and fuzzy prime ideals. Moreover, we present conditions for a pseudo-LBCK-algebra to be a pseudo-LBCK-chain.

1. Introduction

In 1958, C.C. Chang [1] introduced MV (Many Valued) algebras. In 1966, Y. Imai and K. Iséki [12] introduced the notion of BCK-algebra, an algebraic formulation of the BCK system in combinatory logic. In 1996, P. Hájek ([8], [9]) invented Basic Logic (BL for short) and BL-algebras, structures that correspond to this logical system. The class of BL-algebras contains the MV-algebras. G. Georgescu and A. Iorgulescu [4] (1999), and independently J. Rachunek [19] introduced pseudo-MV-algebras which are a non-commutative generalization of MValgebras. After pseudo-MV-algebras, the pseudo-BL-algebras [5] (2000), and the pseudo-BCK-algebras [6] (2001) were introduced and studied. The paper [6] contains basic properties of pseudo-BCK-algebras and their connections with pseudo-MV-algebras and with pseudo-BL-algebras. Y. B. Jun [15] obtained some char-

2010 Mathematics Subject Classification: $03{\rm G}25,\,06{\rm F}35.$

Key words and phrases: Pseudo-BCK-algebra, pseudo-LBCK-algebra, (fuzzy) ideal, (fuzzy) prime ideal.

^{*} Corresponding Author.

Received July 05, 2012; revised November 28, 2013; accepted December 15, 2013.

acterizations of pseudo-BCK-algebras. A. Iorgulescu ([13], [14]) studied particular classes of pseudo-BCK-algebras. A. Walendziak [21] considered maximal ideals in pseudo-BCK-algebras. J. Kühr ([17], [18]) investigated commutative pseudo-BCK-algebras with the relative cancellation property (pseudo-LBCK-algebras).

The concept of a fuzzy set was introduced by L. A. Zadeh [23]. Since then this idea has been applied to other algebraic structures such as semigroups, groups, rings, modules, vector spaces and topologies. Fuzzy ideals of BCK-algebras were introduced by O. G. Xi in [22]. Recently, we applied the concept of a fuzzy ideal to pseudo-BCK-algebras ([2]). In this paper, we introduce and investigate the notion of a fuzzy prime ideal in pseudo-LBCK-algebras. We give various characterizations of fuzzy prime ideals and establish the so called prime extension property for fuzzy ideals. Moreover, using the concept of a fuzzy prime ideal we present conditions for an ideal to be prime and also for a pseudo-LBCK-algebra to be a pseudo-LBCKchain.

2. Preliminaries

The notion of pseudo-BCK-algebras is defined by Georgescu and Iorgulescu [6] as follows:

Definition 2.1. A pseudo-BCK-algebra is a structure $(A; \leq , *, \circ, 0)$, where " \leq " is a binary relation on a set A, "*" and " \circ " are binary operations on A and "0" is an element of A, verifying the axioms: for all $x, y, z \in A$,

 $\begin{array}{ll} (\mathrm{pBCK-1}) \ (x*y) \circ (x*z) \leq z*y, & (x \circ y)*(x \circ z) \leq z \circ y, \\ (\mathrm{pBCK-2}) \ x*(x \circ y) \leq y, & x \circ (x*y) \leq y, \\ (\mathrm{pBCK-3}) \ x \leq x, \\ (\mathrm{pBCK-4}) \ 0 \leq x, \\ (\mathrm{pBCK-5}) \ (x \leq y \text{ and } y \leq x) \ \Rightarrow \ x = y, \\ (\mathrm{pBCK-6}) \ x \leq y \Leftrightarrow x*y = 0 \Leftrightarrow x \circ y = 0. \end{array}$

Note that every pseudo-BCK-algebra satisfying $x*y=x\circ y$ for all $x,y\in A$ is a BCK-algebra.

Example 2.2.([10], Example 2.4) Let $A = \{0, a, b, c\}$ and define binary operations "*" and " \circ " on A by the following tables:

k	0	a	b	c	0	0	a	b	
0	0	0	0	0	0	0	0	0	
a	a	0	0	0	a	a	0	0	
b	b	b	0	0	b	b	b	0	
c	c	b	b	0	c	c	c	a	

Then $(A; \leq, *, \circ, 0)$ is a pseudo-BCK-algebra, where 0 < a < b < c.

Let $(A; \le, *, \circ, 0)$ be a pseudo-BCK-algebra. Then the algebra $(A; *, \circ, 0)$ satisfies the following identities and quasi-identity:

(A1) $[(x * y) \circ (x * z)] \circ (z * y) = 0,$

- (A2) $[(x \circ y) * (x \circ z)] * (z \circ y) = 0,$
- (A3) x * 0 = x,
- $(A4) \quad x \circ 0 = x,$
- (A5) 0 * x = 0,
- (A6) $x * y = 0 = y * x \Rightarrow x = y.$

By the proof of Theorem 1.1.10 from [17], if $(A; *, \circ, 0)$ is an algebra of type (2, 2, 0) satisfying (A1)-(A6), then the relation \leq defined by

$$x \le y \Leftrightarrow x * y = 0$$

is a partial order making the structure $(A; \leq, *, \circ, 0)$ into a pseudo-BCK-algebra.

Therefore pseudo-BCK-algebras can be treated as pure algebras with binary operations * and \circ , and a constant 0 (see [20]).

Definition 2.3. A pseudo-BCK-algebra is *commutative* (see [17], [18]) if it satisfies the identities:

$$\begin{aligned} x*(x\circ y) &= y*(y\circ x),\\ x\circ(x*y) &= y\circ(y*x). \end{aligned}$$

Example 2.4.([18], Example 3.1) Let $(G; +, -, 0, \wedge, \vee)$ be a lattice-ordered group and let $G^+ = \{x \in G : x \ge 0\}$ be its positive cone. Then upon defining

 $x * y = x - (x \land y)$ and $x \circ y = -(x \land y) + x$,

 $(G^+; *, \circ, 0)$ is a commutative pseudo-BCK-algebra.

Example 2.5. The pseudo-BCK-algebra A from Example 2.2 is not commutative, since e.g. $a * (a \circ b) = a$ while $b * (b \circ a) = 0$.

By Theorem 4.2 of [18] commutative pseudo-BCK-algebras can be defined by the following identities:

(C1) $x \circ (x * y) = y \circ (y * x) = x * (x \circ y) = y * (y \circ x),$

(C2) $(x \circ y) * z = (x * z) \circ y,$

(C3) $x * x = 0 = x \circ x$,

 $(\mathrm{C4}) \quad x*0=x=x\circ 0.$

Definition 2.6. We say that a commutative pseudo-BCK-algebra $(A; *, \circ, 0)$ satisfies the *relative cancellation property*, (RCP) for short, if for every $a, x, y \in A$,

 $a \le x, y$ and x * a = y * a imply x = y.

The relative cancellation property can be equivalently defined by:

 $a \le x, y$ and $x \circ a = y \circ a$ imply x = y

for all $a, x, y \in A$ (see [18], p. 477).

Example 2.7. The commutative pseudo-BCK-algebra $(G^+; *, \circ, 0)$ from Example 2.4 satisfies (RCP). Indeed, let $a, x, y \in G^+$. Suppose that $a \leq x, y$ and let x * a = y * a. Then $x - (x \wedge a) = y - (y \wedge a)$ and hence x - a = y - a. Consequently, x = y.

Example 2.8. Consider the set $A = \{0, 1, 2, 3\}$ with the binary operation "*" given as follows:

*	0	1	2	3
0	0	0	0	0
1	1	0	0	0
2	2	1	0	1
3	3	1	1	0

It is easy to see that (A; *, 0) is a commutative BCK-algebra. Observe that 1 < 2, 3 and 2 * 1 = 3 * 1 while $2 \neq 3$. Therefore A does not satisfy the (RCP).

We shall refer to commutative pseudo-BCK-algebras with (RCP) briefly as *pseudo-LBCK-algebras*. We borrow the name "pseudo-LBCK-algebra" from [3] (see also [17] and [18]).

Let $(A; *, \circ, 0)$ be a commutative pseudo-BCK-algebra. From Proposition 1.15 of [6] it follows that A is a meet-semilattice with respect to its natural order (that is, $\inf\{x, y\}$ exists for any two elements x and y), where

(1.1)
$$x \wedge y := \inf\{x, y\} = x \circ (x * y).$$

Theorem 6.8 of [18] shows that $(A; *, \circ, 0)$ is a pseudo-LBCK-algebra if and only if A satisfies (C1)-(C4) and the following identities:

(1.2)
$$(x * y) \land (y * x) = 0 = (x \circ y) \land (y \circ x).$$

A $pseudo-LBCK\mbox{-}chain$ is a pseudo-LBCK-algebra such that its partial order is linear.

Example 2.9. Let $(M; \oplus, \bar{}, \infty, 0, 1)$ be a pseudo-MV-algebra and we put $x \odot y = (y^- \oplus x^-)^{\sim}$. Define

$$x * y = x \odot y^{-}$$
 and $x \circ y = y^{\sim} \odot x$.

By 4.1.3 of [17], $(M; *, \circ, 0)$ is a commutative pseudo-BCK-algebra. If we put

$$x \leq y \Leftrightarrow x^- \oplus y = 1,$$

then $(M; \leq)$ is a lattice and applying Proposition 1.24 of [7] we have (for all $x, y \in M$)

$$(x*y) \land (y*x) = (x \odot y^-) \land (y \odot x^-) = 0$$

and similarly, $(x \circ y) \land (y \circ x) = 0$. Thus M is a pseudo-LBCK-algebra.

Definition 2.10. Let $(A; *, \circ, 0)$ be a pseudo-BCK-algebra. A subset $I \subseteq A$ is called an *ideal* of A if it satisfies for all $x, y \in A$:

- (I1) $0 \in I$,
- (I2) if $x * y \in I$ and $y \in I$, then $x \in I$.

An ideal I of A is proper if $I \neq A$.

Example 2.11. Let A be the pseudo-BCK-algebra from Example 2.2. Then it is easy to see that $\{0\}, \{0, a\}$ and A are the only ideals of A.

Proposition 2.12. Let *I* be an ideal of a pseudo-BCK-algebra *A*. For any $x, y \in A$, if $y \in I$ and $x \leq y$, then $x \in I$.

Proof. Straightforward.

Proposition 2.13. Let I be a subset of a pseudo-BCK-algebra A. Then I is an ideal of A if and only if it satisfies conditions (I1) and

(I2') for all $x, y \in A$, if $x \circ y \in I$ and $y \in I$, then $x \in I$.

Proof. It suffices to prove that if (I2) is satisfied, then (I2') is also satisfied. The proof of the converse of this implication is analogous. Suppose that $x \circ y \in I$ and $y \in I$. From (pBCK-2) we know that $x * (x \circ y) \leq y$. Then, by Proposition 2.12, $x * (x \circ y) \in I$. Hence, since $x \circ y \in I$, by (I2), $x \in I$.

Let A be a pseudo-BCK-algebra. Denote by Id(A) the set of all ideals of A. Note that Id(A) is a distributive lattice.

Definition 2.14. Let A be a pseudo-BCK-algebra. We say that a proper ideal P of A is *prime* if for every $I, J \in Id(A), I \cap J \subseteq P$ implies $I \subseteq P$ or $J \subseteq P$.

Since the lattice Id(A) is distributive, it is easy to see that $P \in Id(A)$ is prime if and only if, for all $I, J \in Id(A), P = I$ or P = J whenever $P = I \cap J$.

Example 2.15.([11]) Let $A = \{0, a, b, c\}$ and define a binary operation "*" on A by the following table:

*	0	a	b	С
0	0	0	0	0
a	a	0	a	a
b	b	b	0	b
С	С	С	С	0

Then (A; *, 0) is a BCK-algebra, so also a pseudo-BCK-algebra. It is easy to see that $\{0, a, b\}$ and $\{0, a, c\}$ are prime ideals of A and $\{0, a\}$ is not a prime ideal of A.

Proposition 2.16.([16], Theorem 3.9) Let $(A; *, \circ, 0)$ be a pseudo-LBCK-algebra. Then for any proper ideal P of A, the following are equivalent:

(i) P is prime;

П

(ii) for all $x, y \in A$, if $x \wedge y \in P$, then $x \in P$ or $y \in P$; (iii) for all $x, y \in A$, if $x \wedge y = 0$, then $x \in P$ or $y \in P$; (iv) for all $x, y \in A$, if $x * y \in P$ or $y * x \in P$;

(v) for all $x, y \in A$, if $x \circ y \in P$ or $y \circ x \in P$.

From Proposition 3.2.5 of [17] we obtain

Proposition 2.17. Let J be a proper ideal of a pseudo-LBCK-algebra A and $a \in A - J$. Then there is a prime ideal P of A such that $J \subseteq P$ and $a \notin P$.

3. Fuzzy Prime Ideals

We now review some fuzzy logic concepts. First, for $\Gamma \subseteq [0; 1]$ we define $\bigwedge \Gamma = \inf \Gamma$ and $\bigvee \Gamma = \sup \Gamma$. Obviously, if $\Gamma = \{\alpha, \beta\}$, then $\alpha \land \beta = \min \{\alpha, \beta\}$ and $\alpha \lor \beta = \max \{\alpha, \beta\}$. Recall that a *fuzzy set* in A is a function $\mu : A \to [0; 1]$.

For any fuzzy sets μ and ν in a pseudo-BCK-algebra A, we define

$$\mu \leq \nu$$
 iff $\mu(x) \leq \nu(x)$ for all $x \in A$

It is easy to check that this relation is an order relation in the set of fuzzy sets in A.

Definition 3.1.([2]) A fuzzy set μ in a pseudo-BCK-algebra A is called a *fuzzy ideal* of A if it satisfies for all $x, y \in A$:

(d1) $\mu(0) \ge \mu(x),$ (d2) $\mu(x) \ge \mu(x * y) \land \mu(y).$

Proposition 3.2. Let μ be a fuzzy ideal of a pseudo-BCK-algebra A. For any $x, y \in A$, if $x \leq y$, then $\mu(x) \geq \mu(y)$.

Proof. If $x \leq y$, then x * y = 0. Hence, by (d2), we have $\mu(x) \geq \mu(x * y) \land \mu(y) = \mu(0) \land \mu(y) = \mu(y)$. \Box

Denote by $\mathcal{FI}(A)$ the set of all fuzzy ideals of a pseudo-BCK-algebra A.

Example 3.3. Let A be the pseudo-BCK-algebra from Example 2.2. Let $0 \le \alpha_3 < \alpha_2 < \alpha_1 \le 1$. Define a fuzzy set μ in A by

$$\mu(x) = \begin{cases} \alpha_1 & \text{if } x = 0, \\ \alpha_2 & \text{if } x = a, \\ \alpha_3 & \text{if } x \in \{b, c\} \end{cases}$$

It is easily checked that μ satisfies (d1) and (d2). Thus $\mu \in \mathfrak{FI}(A)$.

Example 3.4. Let *I* be an ideal of a pseudo-BCK-algebra *A* and let $\alpha, \beta \in [0, 1]$, with $\alpha > \beta$. Define $\mu_I^{\alpha,\beta}$ as follows:

$$\mu_I^{\alpha,\beta}(x) := \begin{cases} \alpha & \text{if } x \in I, \\ \beta & \text{otherwise} \end{cases}$$

We denote $\mu_I^{\alpha,\beta} = \mu$. Since $0 \in I$, $\mu(0) = \alpha \ge \mu(x)$ for all $x \in A$. To prove (d2), let $x, y \in A$. If $x \in I$, then $\mu(x) = \alpha \ge \mu(x * y) \land \mu(y)$. Suppose now that $x \notin I$. By the definition of an ideal, $x * y \notin I$ or $y \notin I$. Therefore, $\mu(x * y) \wedge \mu(y) = \beta = \mu(x)$. Thus μ is a fuzzy ideal of A.

In particular the characteristic function χ_I of I:

$$\chi_{I}(x) = \begin{cases} 1 & \text{if } x \in I, \\ 0 & \text{otherwise} \end{cases}$$

is the fuzzy ideal of A.

Proposition 3.5. ([2], Proposition 3.5) A fuzzy set μ in a pseudo-BCK-algebra A is a fuzzy ideal of A if and only if it satisfies (d1) and

(d2')
$$\mu(x) \ge \mu(x \circ y) \land \mu(y)$$
 for all $x, y \in A$.

Proposition 3.6. ([2], Theorem 3.8) Let μ be a fuzzy set in a pseudo-BCK-algebra A. Then $\mu \in \mathfrak{FI}(A)$ if and only if its nonempty level subset

$$U(\mu; \alpha) := \{ x \in A : \mu(x) \ge \alpha \}$$

is an ideal of A for all $\alpha \in [0; 1]$.

Corollary 3.7. If μ is a fuzzy ideal of a pseudo-BCK-algebra A, then the set

$$A_b := \{x \in A : \mu(x) \ge \mu(b)\}$$

is an ideal of A for every $b \in A$.

By Corollary 3.7, we have the following.

,

Corollary 3.8. If μ is a fuzzy ideal of a pseudo-BCK-algebra A, then the set

$$A_{\mu} := \{ x \in A : \mu(x) = \mu(0) \}$$

is an ideal of A.

Example 3.9. Let μ be as in Example 3.3. One can easily check that for all $\alpha \in [0,1]$ we have

$$U(\mu; \alpha) = \begin{cases} \emptyset & \text{if } \alpha > \alpha_1, \\ \{0\} & \text{if } \alpha_2 < \alpha \le \alpha_1, \\ \{0, a\} & \text{if } \alpha_3 < \alpha \le \alpha_2, \\ A & \text{if } \alpha \le \alpha_3. \end{cases}$$

Since $\{0\}, \{0, a\}$ and A are all ideals of A, this is an another proof (by Theorem 3.6) that μ is a fuzzy ideal of A.

Let A be a pseudo-BCK-algebra. Let $\mu_t \in \mathcal{FI}(A)$ for $t \in T$. The meet $\bigwedge_{t \in T} \mu_t$ of fuzzy ideals μ_t of A is defined as follows:

$$\left(\bigwedge_{t\in T}\mu_t\right)(x)=\bigwedge\{\mu_t(x):t\in T\}.$$

Proposition 3.10.([2], Theorem 3.14) Let $\mu_t \in \mathcal{FI}(A)$ for $t \in T$. Then $\bigwedge_{t \in T} \mu_t \in \mathcal{FI}(A)$.

Now, we introduce and study fuzzy prime ideals in a pseudo-LBCK-algebra.

Definition 3.11. A fuzzy ideal μ of a pseudo-LBCK-algebra A is said to be *fuzzy* prime if it is non-constant and satisfies:

$$\mu\left(x \wedge y\right) = \mu\left(x\right) \lor \mu\left(y\right)$$

for all $x, y \in A$.

Theorem 3.12. Let μ be a non-constant fuzzy ideal of a pseudo-LBCK-algebra A. Then the following are equivalent:

(i) μ is a fuzzy prime ideal of A,

(ii) for all $x, y \in A$, if $\mu(x \wedge y) = \mu(0)$, then $\mu(x) = \mu(0)$ or $\mu(y) = \mu(0)$,

(iii) for all $x, y \in A$, $\mu(x * y) = \mu(0)$ or $\mu(y * x) = \mu(0)$,

(iv) for all $x, y \in A$, $\mu(x \circ y) = \mu(0)$ or $\mu(y \circ x) = \mu(0)$.

Proof. (i) \Rightarrow (ii): Assume that μ is a fuzzy prime ideal of A. Let $x, y \in A$ be such that $\mu(x \wedge y) = \mu(0)$. Then $\mu(x) \lor \mu(y) = \mu(x \wedge y) = \mu(0)$ and hence $\mu(x) = \mu(0)$ or $\mu(y) = \mu(0)$.

(ii) \Rightarrow (iii): Since A satisfies (1.2), $(x*y) \land (y*x) = 0$. Then $\mu((x*y) \land (y*x)) = \mu(0)$ and by (ii), we obtain $\mu(x*y) = \mu(0)$ or $\mu(y*x) = \mu(0)$.

(iii) \Rightarrow (i): Let $x, y \in A$. Suppose that, for instance, $\mu(x * y) = \mu(0)$. By (1.1), $x \wedge y = x \circ (x * y)$ and hence applying Proposition 3.5 we obtain $\mu(x) \ge \mu(x \wedge y) \land$ $\mu(x * y)$. Then $\mu(x) \ge \mu(x \wedge y)$. Since $x \wedge y \le x$, we conclude that $\mu(x) \le \mu(x \wedge y)$. Consequently, $\mu(x) = \mu(x \wedge y)$. From (d2) it follows that $\mu(x) \ge \mu(x * y) \land \mu(y)$. Then $\mu(x) \ge \mu(0) \land \mu(y) = \mu(y)$. Finally, we have $\mu(x \wedge y) = \mu(x) = \mu(x) \lor \mu(y)$. So μ is a fuzzy prime ideal of A.

Analogously, the implications (ii) \Rightarrow (iv) \Rightarrow (i) can be proved.

Theorem 3.13. Let A be a pseudo-LBCK-algebra and let $\mu \in \mathfrak{FI}(A)$. Then μ is a fuzzy prime ideal of A if and only if A_{μ} is a prime ideal of A.

Proof. Suppose that μ is a fuzzy prime ideal of a pseudo-LBCK-algebra A. Since μ is non-constant, A_{μ} is proper. Let $x, y \in A$ and $x \wedge y \in A_{\mu}$. Then $\mu(0) = \mu(x \wedge y) = \mu(x) \vee \mu(y)$. Hence $\mu(x) = \mu(0)$ or $\mu(y) = \mu(0)$. This means that $x \in A_{\mu}$ or $y \in A_{\mu}$. Therefore, by Proposition 2.16, A_{μ} is a prime ideal of A.

Conversely, assume that A_{μ} is a prime ideal of A. Since A_{μ} is proper, μ is non-constant. Let $x, y \in A$. From (1.2) we have $(x * y) \land (y * x) = 0 \in A_{\mu}$. Hence, by Proposition 2.16, $x * y \in A_{\mu}$ or $y * x \in A_{\mu}$, i.e., $\mu(x * y) = \mu(0)$ or $\mu(y * x) = \mu(0)$. Thus, by Theorem 3.12, μ is a fuzzy prime ideal of A.

Corollary 3.14. If μ is a fuzzy prime ideal of a pseudo-LBCK-algebra A, then the set

$$\mathrm{Ker}\mu = \{x \in A : \mu(x) = 1\}$$

is either empty or a prime ideal of A.

Theorem 3.15. Let A be a pseudo-LBCK-algebra, $P \in Id(A)$ and $\alpha, \beta \in [0,1]$ with $\alpha > \beta$. Then P is a prime ideal of A if and only if $\mu_P^{\alpha,\beta}$ is a fuzzy prime ideal of A.

Proof. Assume that P is a prime ideal of a pseudo-LBCK-algebra A. Since P is proper, $\mu_P^{\alpha,\beta}$ is non-constant. Let $x, y \in A$. Then, by (1.2), $(x * y) \land (y * x) = 0 \in P$. Hence, by Proposition 2.16, $x * y \in P$ or $y * x \in P$, i.e., $\mu_P^{\alpha,\beta}(x * y) = \alpha = \mu_P^{\alpha,\beta}(0)$ or $\mu_P^{\alpha,\beta}(y * x) = \alpha = \mu_P^{\alpha,\beta}(0)$. Thus, by Theorem 3.12, $\mu_P^{\alpha,\beta}$ is a fuzzy prime ideal of A.

Conversely, assume that $\mu_P^{\alpha,\beta}$ is a fuzzy prime ideal of A. Then, by Theorem 3.13, $P = A_{\mu_{\alpha,\beta}^{\alpha,\beta}}$ is a prime ideal of A.

Corollary 3.16. Let A be a pseudo-LBCK-algebra and let $P \in Id(A)$. Then P is a prime ideal of A if and only if χ_P is a fuzzy prime ideal of A.

Theorem 3.17. Let $A \neq \{0\}$ be a pseudo-LBCK-algebra. Then the following are equivalent:

- (i) A is a pseudo-LBCK-chain,
- (ii) every non-constant fuzzy ideal of A is fuzzy prime,
- (iii) every non-constant fuzzy ideal μ of A such that $\mu(0) = 1$ is fuzzy prime, (iv) the form ideal μ of A is form mime
- (iv) the fuzzy ideal $\chi_{\{0\}}$ of A is fuzzy prime.

Proof. (i) \Rightarrow (ii): Assume that A is a pseudo-LBCK-chain and μ is a non-constant fuzzy ideal of A. Then for any $x, y \in A$, $x \leq y$ or $y \leq x$. Hence, x * y = 0 or y * x = 0. Thus $\mu(x * y) = \mu(0)$ or $\mu(y * x) = \mu(0)$. Therefore, by Theorem 3.12, μ is a fuzzy prime ideal of A.

(ii) \Rightarrow (iii): Obvious.

(iii) \Rightarrow (iv): Obvious.

(iv) \Rightarrow (i): Let $x, y \in A$. Since $\chi_{\{0\}}$ is a fuzzy prime ideal of A, we have, by Theorem 3.12, $\chi_{\{0\}}(x * y) = \chi_{\{0\}}(0) = 1$ or $\chi_{\{0\}}(y * x) = \chi_{\{0\}}(0) = 1$. Hence $x * y \in \{0\}$ or $y * x \in \{0\}$, i.e., x * y = 0 or y * x = 0. Thus, $x \leq y$ or $y \leq x$. It follows that A is a pseudo-LBCK-chain. \Box

Theorem 3.18. Let μ be a non-constant fuzzy set in a pseudo-LBCK-algebra A. Then μ is a fuzzy prime ideal of A if and only if for each $\alpha \in [0,1]$, $U(\mu;\alpha)$ is empty or is a prime ideal of A if it is proper.

Proof. Assume μ is a fuzzy prime ideal of A. For each $\alpha \in [0,1]$, if $U(\mu; \alpha) \neq \emptyset$, then it is an ideal of A, by Proposition 3.6. Let $x, y \in A$. If $U(\mu; \alpha)$ is proper and $x \wedge y \in U(\mu; \alpha)$, then $\mu(x) \vee \mu(y) = \mu(x \wedge y) \geq \alpha$. Hence $\mu(x) \geq \alpha$ or $\mu(y) \geq \alpha$, i.e., $x \in U(\mu; \alpha)$ or $y \in U(\mu; \alpha)$. Therefore, by Proposition 2.16, $U(\mu; \alpha)$ is a prime ideal of A.

Conversely, let $x, y \in A$. Assume that $\mu(x \wedge y) > \mu(x) \lor \mu(y)$. Take

$$eta = rac{1}{2} \left[\mu \left(x \wedge y
ight) + \left(\mu \left(x
ight) arphi \left(y
ight)
ight)
ight].$$

Then $\mu(x \wedge y) > \beta > \mu(x) \lor \mu(y)$ and hence $x \wedge y \in U(\mu; \beta)$, $x \notin U(\mu; \beta)$ and $y \notin U(\mu; \beta)$. This is a contradiction. Therefore μ is a fuzzy prime ideal of A. \Box

Theorem 3.19. (Prime extension property for fuzzy ideals) Let μ be a fuzzy prime ideal of a pseudo-LBCK-algebra A and ν any non-constant fuzzy ideal of A such that $\mu \leq \nu$ and $\mu(0) = \nu(0)$. Then ν is a fuzzy prime ideal of A.

Proof. Let $x, y \in A$. Since μ is a fuzzy prime ideal of A, we conclude from Theorem 3.12 that $\mu(x * y) = \mu(0)$ or $\mu(y * x) = \mu(0)$. Let $\mu(x * y) = \mu(0)$. Then $\nu(x * y) = \nu(0)$, because $\mu \leq \nu$ and $\mu(0) = \nu(0)$. Similarly, if $\mu(y * x) = \mu(0)$, then $\nu(y * x) = \nu(0)$. Therefore, from Theorem 3.12 it follows that ν is a fuzzy prime ideal of A.

Let $0 \le t < 1$ be a real number. If $\alpha \in [0, 1]$, α^t shall mean the positive root. Let $\mu : A \to [0, 1]$ be a fuzzy set in a pseudo-BCK-algebra A. We define $\mu^t : A \to [0, 1]$ by $\mu^t (x) = (\mu(x))^t$ for all $x \in A$. It is easily verified that if μ is a fuzzy ideal of A, then so is μ^t , and if $\mu(0) = 1$, then $A_{\mu^t} = A_{\mu}$.

Theorem 3.20. Let μ be a fuzzy prime ideal of a pseudo-LBCK-algebra A such that $\mu(0) = 1$. Then for every $0 \le t < 1$, μ^t is a fuzzy prime ideal of A.

Proof. Since μ is non-constant, μ^t is also non-constant. Next, we have $\mu^t(0) = (\mu(0))^t = 1 = \mu(0)$ and $\mu \leq \mu^t$. This means, by Theorem 3.19, that μ^t is a fuzzy prime ideal of A.

Theorem 3.21. Let μ be a fuzzy prime ideal of a pseudo-LBCK-algebra A and $\alpha \in [0, \mu(0))$. Then $\mu \lor \alpha$ is a fuzzy prime ideal of A, where $(\mu \lor \alpha)(x) = \mu(x) \lor \alpha$.

Proof. First, we prove that $\mu \lor \alpha$ is a fuzzy ideal of A. Let $x, y \in A$. We have $(\mu \lor \alpha)(0) = \mu(0) \lor \alpha \ge \mu(x) \lor \alpha = (\mu \lor \alpha)(x)$. Since $\mu(x) \ge \mu(x * y) \land \mu(y)$, we conclude that $\mu(x) \lor \alpha \ge (\mu(x * y) \lor \alpha) \land (\mu(y) \lor \alpha)$ and hence $(\mu \lor \alpha)(x) \ge (\mu \lor \alpha)(x * y) \land (\mu \lor \alpha)(y)$. Therefore $\mu \lor \alpha \in \mathcal{FI}(A)$.

Since μ is non-constant, $\mu(x_0) < \mu(0)$ for some $x_0 \in A$. Then $(\mu \lor \alpha)(x_0) = \mu(x_0) \lor \alpha < \mu(0) \le \mu(0) \lor \alpha = (\mu \lor \alpha)(0)$. This shows that $\mu \lor \alpha$ is a non-constant fuzzy ideal. Finally, since $(\mu \lor \alpha)(0) = \mu(0)$ and $\mu \le \mu \lor \alpha$, we conclude from Theorem 3.19 that $\mu \lor \alpha$ is a fuzzy prime ideal of A. \Box

Theorem 3.22. Let μ be a non-constant fuzzy ideal of a pseudo-LBCK-algebra A and $\mu(0) \neq 1$. Then there is a fuzzy prime ideal ν of A such that $\mu \leq \nu$.

Proof. Since μ is a non-constant fuzzy ideal of A, we have A_{μ} is a proper ideal of A. Hence, by Proposition 2.17, there is a prime ideal P of A such that $A_{\mu} \subseteq P$. By Corollary 3.16, χ_P is a fuzzy prime ideal of A. Let $\nu = \chi_P \lor \alpha$, where $\alpha = \bigvee \{\mu(x) : x \in A - P\}$. Then $\alpha \leq \mu(0) < 1$. From Theorem 3.21 we see that ν is a fuzzy prime ideal of A. Moreover, $\mu(x) \leq \nu(x)$ for all $x \in A$.

Theorem 3.23. Let μ be a non-constant fuzzy ideal of a pseudo-LBCK-algebra A such that for any fuzzy ideals μ_1, μ_2 of $A, \mu_1 \wedge \mu_2 \leq \mu$ implies $\mu_1 \leq \mu$ or $\mu_2 \leq \mu$. Then μ is a fuzzy prime ideal of A.

Proof. Assume that μ is not a fuzzy prime ideal of A. By Theorem 3.13, A_{μ} is not a prime ideal of A. Then there are $J_1, J_2 \in Id(A)$ such that $A_{\mu} = J_1 \cap J_2$,

 $A_{\mu} \subset J_1$, and $A_{\mu} \subset J_2$. Let $x_1, x_2 \in A$ with $x_1 \in J_1 - A_{\mu}$ and $x_2 \in J_2 - A_{\mu}$. Hence $\mu(x_1) < \mu(0)$ and $\mu(x_2) < \mu(0)$. Define fuzzy sets μ_1 and μ_2 in A as follows:

$$\mu_{1}(x) = \begin{cases} \mu(0) & \text{if } x \in J_{1}, \\ 0 & \text{if } x \notin J_{1}, \end{cases}$$
$$\mu_{2}(x) = \begin{cases} \mu(0) & \text{if } x \in J_{2}, \\ 0 & \text{if } x \notin J_{2} \end{cases}$$

It is easy to prove that μ_1, μ_2 are fuzzy ideals and $\mu_1 \wedge \mu_2 \leq \mu$. Since $\mu_1(x_1) = \mu(0) > \mu(x_1)$ and $\mu_2(x_2) = \mu(0) > \mu(x_2)$, we see that $\mu_1 \nleq \mu$ and $\mu_2 \nleq \mu$. This is a contradiction. Thus μ is a fuzzy prime ideal of A.

The converse of Theorem 3.23 does not hold, which is shown in the following example.

Example 3.24. Let A be a pseudo-BCK-algebra from Example 2.15. It is not difficult to verify that A is a pseudo-LBCK-algebra. Let $0 \le \alpha_3 < \alpha_2 < \alpha_1 \le 1$. Define a fuzzy ideal μ of A by

$$\mu(x) = \begin{cases} \alpha_2 & \text{if } x \in \{0, a, b\}, \\ \alpha_3 & \text{if } x = c. \end{cases}$$

Then μ is fuzzy prime. Define fuzzy ideals μ_1, μ_2 of A as follows:

$$\mu_1(x) = \alpha_2 \text{ for all } x \in A,$$

$$\mu_2(x) = \begin{cases} \alpha_1 & \text{if } x \in \{0, a\}, \\ \alpha_3 & \text{if } x \in \{b, c\}. \end{cases}$$

Then $\mu_1 \wedge \mu_2 \leq \mu$, but $\mu_1 \nleq \mu$ and $\mu_2 \nleq \mu$.

References

- C. C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc., 88(1958), 467-490.
- [2] G. Dymek and A. Walendziak, Fuzzy ideals of pseudo-BCK-algebras, Demonstratio Mathematica, 45(2012), 1-15.
- [3] A. Dvurečenskij and T. Vetterlein, Algebras in the positive cone of po-groups, Order, 19(2002), 127-146.
- [4] G. Georgescu and A. Iorgulescu, Pseudo-MV algebras: a noncommutative extension of MV algebras, In: The Proc. of the Fourth International Symp. on Economic Informatics, Bucharest, Romania, May 1999, 961-968.
- [5] G. Georgescu and A. Iorgulescu, Pseudo-BL algebras: a noncommutative extension of BL algebras, In: Abstracts of the Fifth International Conference FSTA 2000, Slovakia, February 2000, 90-92.

- [6] G. Georgescu and A. Iorgulescu, Pseudo-BCK algebras: an extension of BCK algebras, In: Proc. of DMTCS'01: Combinatorics, Computability and Logic, Springer, London, 2001, 97-114.
- [7] G. Georgescu and A. Iorgulescu, *Pseudo-MV algebras*, Multiplae-Valued Logic, 6(2001), 95-35.
- [8] P. Hájek, Metamathematics of fuzzy logic, Inst. of Comp. Science, Academy of Science of Czech Rep., Technical report 682 (1996).
- [9] P. Hájek, Metamathematics of fuzzy logic, Kluwer Acad. Publ., Dordrecht, 1998.
- [10] R. Halaš and J. Kühr, Deductive systems and annihilators of pseudo-BCK algebras, Italian Journal of Pure and Applied Mathematics, 25(2009), 83-94.
- [11] W. Huang and Y. B. Jun, Ideals and subalgebras in BCI algebras, South. Asian Bull. Math., 26(2002), 567-573.
- [12] Y. Imai and K. Iséki, On axiom systems of propositional calculi XIV, Proc. Japan Academy, 42(1966), 19-22.
- [13] A. Iorgulescu, Classes of pseudo-BCK algebras, Part I, Journal of Multiplae-Valued Logic and Soft Computing, 12(2006), 71-130.
- [14] A. Iorgulescu, Classes of pseudo-BCK algebras, Part II, Journal of Multiplae-Valued Logic and Soft Computing, 12(2006), 575-629.
- [15] Y. B. Jun, Characterizations of pseudo-BCK algebras, Scientiae Mathematicae Japonicae, 57(2003), 265-270.
- [16] J. Kühr, Pseudo BCK-semilattices, Demonstratio Mathematica, 40(2007), 495-516.
- [17] J. Kühr, Pseudo-BCK-algebras and related structures, Univerzita Palackého v Olomouci, 2007.
- [18] J. Kühr, Commutative pseudo-BCK-algebras, Southeast Asian Bulletin of Mathematics, 33(2009), 463-486.
- [19] J. Rachůnek, A non-commutative generalization of MV algebras, Czechoslovak Math. J., 52(2002), 255-273.
- [20] A. Walendziak, On axiom systems of pseudo-BCK-algebras, Bulletin of the Malaysian Mathematical Sciences Society, 34(2011), 287-293.
- [21] A. Walendziak, On maximal ideals of pseudo-BCK-algebras, Discussiones Mathematicae, General Algebra and Applications, 31(2011), 61-73.
- [22] O. G. Xi, Fuzzy BCK-algebras, Math. Japon., 36(1991), 935-942.
- [23] L. A. Zadeh, Fuzzy sets, Inform. Control, 8(1965), 338-353.