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Abstract. The purpose of this paper is to prove some results which are of independent

interest and related to additive maps on σ-prime rings. Further, examples are given

to demonstrate that the restrictions imposed on the hypotheses of these results are not

superfluous.

1. Introduction

During the past few decades, there has been an ongoing interest concerning
the relationship between the commutativity of a ring and the behavior of a special
mapping on the ring. An example due to Oukhtite [9], shows that every prime ring
can be injected in σ-prime ring and from this point of view σ-prime rings constitute a
more general class of prime rings. Recently, a major breakthrough has been achieved
by Oukhtite et al. [10], where the important results by Posner[12], Herstein[5]
and Bell[2] have been proved for σ-prime rings. They are spree of developing and
extending more and more results which hold for a prime ring (see, e.g.,[7, 11], where
further references can be found). A continuous approach in this direction is still on.
In this context, we establish some results concerning additive map with additional
conditions in non commutative σ-prime ring. Further, we show that some additive
maps on a σ-prime ring with additional conditions that acts as a homomorphism
or anti-homomorphism on a non zero ideal in the ring, is zero map or the identity
map. In particular, our research can be viewed as a new more elementary approach.
At the end, an example is given to demonstrate that the restrictions imposed on
the hypotheses of the results are not superfluous.

Throughout this note, R will represent an associative ring with multiplicative
center Z(R). For any x, y ∈ R, the symbol [x, y] stand for the commutator xy−yx.
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Recall that a ring R is prime if for any x, y ∈ R, xRy = {0} implies x = 0 or y = 0.
A ring R equipped with an involution σ is to be σ-prime if xRy = xRσ(y) = {0}
⇒ x = 0 or y = 0. An ideal U is a σ-ideal if U is invariant under σ, i.e.,σ(U) = U .
Assume that F : R → R is a map associated with another map δ : R → R so that
F (xy) = F (x)y + xδ(y) holds for all x, y ∈ R. If F is additive and δ is a derivation
of R, then F is said to be a generalized derivation of R that was introduced by
Brešar[4]. In [6], Hvala gave an algebraic study of generalized derivations of prime
rings. We note that if R has the property that Rx = (0) implies x = 0 and g : R → R
is any function, and d : R → R is any additive map such that d(xy) = d(x)y+xg(y)
for all x, y ∈ R, then d is uniquely determined by g and moreover g must be a
derivation by [4, Remark 1]. Let S be any nonempty subset of R and f be any map
of R. If f(xy) = f(x)f(y) or f(xy) = f(y)f(x) for all x, y ∈ S then f is called a
map that acts as a homomorphism or anti-homomorphism on S, respectively.

We shall make extensive use of the following basic identities without any specific
mention; For all x, y, z ∈ R,

(i) [xy, z] = x[y, z] + [x, z]y,

(ii) [x, yz] = y[x, z] + [x, y]z.

2. Main Results

We facilitate our discussion with the simple lemma which is required for devel-
oping the proofs of our main theorems.

Lemma A.([8, Lemma 2.2]) Let R be a a σ-prime ring and I ̸= 0 a σ-ideal of R.
If a, b ∈ R are such that aIb = 0 = aIσ(b), then a = 0 or b = 0.

We begin with the following one.

Theorem 2.1. Suppose R is a noncommutative σ-prime ring and I ̸= 0 a σ-ideal
of R. Let F,D are two additive mappings (not necessary a derivation) on R such
that F (xy) = F (x)y + xD(y), for all x, y ∈ R with additional condition σD = Dσ.
If a ∈ R and [F (x), a] = 0, for all x ∈ I, then F ([x, a]) = 0 or a ∈ Z(R).

Proof. By the hypothesis, we have

[F (x), a] = 0, ∀ x ∈ I.(2.1)

Taking xr instead of x in (2.1) and use it to arrive at

F (x)[r, a] + x[D(r), a] + [x, a]D(r) = 0, ∀ x ∈ I, r ∈ R.(2.2)

In (2.2) replace x by xy, where y ∈ I then, from (2.2), we obtain

(F (x)y + xD(y)− xF (y))[r, a] + [x, a]yD(r) = 0.(2.3)

Take a instead of r in (2.3), we have

[x, a]yD(a) = 0, ∀ x ∈ I,
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and so,

[x, a]ID(a) = 0, ∀ x ∈ I,

Since D is commute with σ. Thus, by Lemma A, it follows that

[x, a] = 0 or D(a) = 0, ∀ x ∈ I.

Assume that a /∈ Z(R), then D(a) = 0. If we substitute sx, s ∈ R for x in (2.3), we
obtain

(F (s)x+ sD(x)− sF (x))y[r, a] + [s, a]xyD(r) = 0, ∀ x, y ∈ I, r ∈ R.(2.4)

Replacing s by a in (2.4), we arrive at

(F (a)x+ aD(x)− aF (x))y[r, a] = 0, ∀ x, y ∈ I, r ∈ R.

Or

(F (a)x+ aD(x)− aF (x))I[r, a] = 0, ∀ x ∈ I, r ∈ R.

Using the fact a /∈ Z(R) together with Lemma A, we obtain

F (a)x+ aD(x)− aF (x) = 0, ∀ x ∈ I.

This implies that

F (ax) = aF (x), ∀ x ∈ I.

On the other hand, if D(a) = 0, we see that the relation

F (xa) = F (x)a, ∀ x ∈ I.

Combining the last two equality we arrive at

F [x, a] = 0, ∀ x ∈ I.

This completes the proof. 2

Theorem 2.2. Suppose R is a noncommutative σ-prime ring and I ̸= 0 a σ-ideal
of R. Let F,D are two additive mappings (not necessary a derivation) on R such
that F (xy) = F (x)y + xD(y), for all x, y ∈ R with additional condition σD = Dσ.
If a ∈ R and F ([x, a]) = 0, for all x ∈ I, then [F (x), a] = 0 or a ∈ Z(R).

Proof. We begin with the situation

F ([x, a]) = 0, for all x ∈ I.

We replace x by xa in the above defining equation to obtain

[x, a]D(a) = 0, for all x ∈ I.(2.5)
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Taking xy instead of x in (2.5) and using (2.5) we obtain

[x, a]yD(a) = 0, for all x, y ∈ I,

and so,

[x, a]ID(a) = 0, for all x ∈ I.(2.6)

Since D is commute with σ. Thus, by Lemma A, it follows that

[x, a] = 0 or D(a) = 0, for all x ∈ I.

If a /∈ Z(R), then D(a) = 0. Now, we replace x by xy in the hypothesis and using
hypothesis to obtain

F (x)[y, a] + [x, a]D(y) + xD([y, a]) = 0, for all x, y ∈ I.(2.7)

From associative law and calculating F (xya) in two different ways, we obtain

xD(ya) = xD(y)a+ xyD(a), for all x, y ∈ I.

Similarly,

xD(ay) = xD(a)y + xaD(y), for all x, y ∈ I.

Comparing last two equation to obtain

xD[y, a] = x[D(y), a] + x[y,D(a)], for all x, y, z ∈ I.(2.8)

From (2.7) & (2.8), and using D(a) = 0 we arrive at

F (x)[y, a] + [x, a]D(y) + x[D(y), a] = 0, for all x, y ∈ I.(2.9)

Substitute yz instead of y in (2.9) and use it to obtain

(F (x)y + xD(y))[z, a] + [x, a]yD(z)− xF (y)[z, a] = 0, for all x, y, z ∈ I

and so,

(F (x)y + xD(y)− xF (y))[z, a] + [x, a]yD(z) = 0, for all x, y, z ∈ I.(2.10)

Replace x by ax in (2.10) and use it, it yields

(F (a)x+ aD(x)− aF (x))y[z, a] = 0, for all x, y, z ∈ I.

Hence, we get

(F (ax)− aF (x))I[z, a] = 0, for all x, z ∈ I.
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Since a /∈ Z(R) and from Lemma A we obtain

F (ax) = aF (x), for all x ∈ I.(2.11)

On other hand, as D(a) = 0,

F (xa) = F (x)a, for all x ∈ I.(2.12)

Combining (2.11) & (2.12), we have

[F (x), a] = 0, for all x ∈ I.

Thus, the proof is complete. 2

Following Corollaries are the immediate consequences of the above theorems.

Corollary 2.3. If R is a σ-prime ring and I ̸= 0 a σ-ideal of R. Suppose F,D
are two additive mappings (not necessary a derivation) on R such that F (xy) =
F (x)y+xD(y), for all x, y ∈ R with additional condition σD = Dσ. If [F (x), a] = 0,
for all x ∈ I, a ∈ R, then F ([x, a]) = 0 or R is commutative.

Corollary 2.4. If R is a σ-prime ring and I ̸= 0 a σ-ideal of R. Suppose F,D
are two additive mappings (not necessary a derivation) on R such that F (xy) =
F (x)y+xD(y), for all x, y ∈ R with additional condition σD = Dσ. If F ([x, a]) = 0,
for all x ∈ I, a ∈ R, then [F (x), a] = 0 or R is commutative.

In [3], Bell and Kappe proved that if δ is a derivation of prime ring ℜ which acts
as a homomorphism or an anti-homomorphism on a nonzero ideal I of ℜ, then
δ = 0 on ℜ. Further, Albas and Argac [1] extended this result to generalized
derivation. Recently, Oukhtite[9] proved that the result is also true for σ-prime
ring, as following:

Theorem A.([9, Theorem 1.1]) Suppose R is a 2-torsion free σ-prime ring, U ̸= 0
a σ-ideal and (f, d) is a generalized derivation with additional condition that σD =
Dσ.

(i) If F (xy) = F (x)F (y), for all x, y ∈ I, then d = 0. Moreover, if F commute
with σ then F is an identity map.

(ii) If F (xy) = F (y)F (x), for all x, y ∈ I and d ̸= 0, then R is commutative.

It would be interesting to know that whether above theorem can be proved
without the assumption that R is 2-torsion free. In this context, we prove the
following:

Theorem 2.5. Suppose R is a σ-prime ring and I ̸= 0 a σ-ideal of R. Let F,D
are two additive mappings (not necessary a derivation) on R such that F (xy) =
F (x)y + xD(y), for all x, y ∈ R with additional condition σD = Dσ. If F acts as
a homomorphism or anti-homomorphism, then D = 0. Moreover, if F commutes
with σ then either F = 0 or F is an identity map on R.

Proof. We break the proof of theorem in two parts.
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(i) If F |I is a homomorphism, we have

F (xy) = F (x)F (y), ∀ x, y ∈ I.

From associative law and calculating F (xyz) in two different ways, we obtain easily

(F (x)− x)yD(z) = 0, ∀ x, y, z ∈ I.

This implies that

(F (x)− x)ID(z) = 0, ∀ x, z ∈ I.

Since D commutes with σ thus, by Lemma A, it follow that either (F (x)− x) = 0
or D(z) = 0 for all x, z ∈ I. If D|I ̸= 0 then F (x) = x, for all x ∈ I. From this our
hypothesis becomes xD(y) = 0 for all x, y ∈ I. Since D commutes with σ and I is
a σ-ideal then from Lemma A we obtain D = 0, a contradiction. Hence D|I = 0.
In this situation, our hypothesis F (xy) = F (x)F (y) for all x, y ∈ I force to

F (x)y = F (x)F (y), ∀ x, y ∈ I.

Replacing x by yz we get

F (x)z(y − F (y)) = 0, ∀ x, y, z ∈ I.

As F commutes with σ and I is a σ-ideal then, by Lemma A, we have either
F (y) = y or F (x) = 0 for all x, y ∈ I.

If F (x) = 0 for all x ∈ I, then 0 = F (rx) = F (r)x+rD(x) = F (r)x, ∀ x ∈ I & r ∈
R, hence, F is a zero map on R. On the other hand, if F (y) = y for all y ∈ I then
rx = F (rx) = F (r)x+ rD(x) = F (r)x, ∀ x ∈ I & r ∈ R. Therefore, by Lemma A
and using the fact F commutes with σ, we obtain

F (r) = r, ∀ r ∈ R.

It remain to prove that D = 0 on R. Let F = 0 (although it is sufficient to assume
F |I = 0), we get

0 = F (rx) = F (r)x+ rD(x) = rD(x), ∀ x ∈ I & r ∈ R.

Since D commutes with σ and I ̸= 0 is a σ-ideal then, by Lemma A we have
D(r) = 0 for all r ∈ R. In second case, if F be an identity map (although it is
sufficient to assume F |I is the identity), we get

rx = F (rx) = F (r)x+ rD(x) = rx+ rD(x), ∀ x ∈ I & r ∈ R.

This implies that D(r) = 0 for all r ∈ R.
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(ii) if F |I is an anti-homomorphism. As in [9] we get

[F (z), y]xD(z) = 0, ∀ x, y, z ∈ I.

That is,

[F (z), y]ID(z) = 0, ∀ y, z ∈ I.

Since D commutes with σ thus, by Lemma A, it follow that

[F (z), y] = 0 or D(z) = 0, ∀ y, z ∈ I.

If D(z) ̸= 0 for some z ∈ I, then [F (z), y] = 0 for all y, z ∈ I. Now, we have

F (xy)z + xyD(z) = F (xyz) = F (z)F (y)F (x) = F (y)F (z)F (x)

= F (y)F (xz) = F (y)(F (x)z + xD(z))

= F (xy)z + F (y)xD(z), ∀ x, y ∈ I.

This implies that

xyD(z) = F (y)xD(z), ∀ x, y ∈ I.(2.13)

Taking rx in place of x in (2.13) we get

rxyD(z) = F (y)rxD(z), ∀ x, y, z ∈ I r ∈ R.(2.14)

Multiplying (2.13) by r, we have

rxyD(z) = rF (y)xD(z), ∀ x, y, z ∈ I r ∈ R.(2.15)

From (2.14) and (2.15), we obtain

(F (y)r − rF (y))xD(z) = 0, ∀ x, y, z ∈ I r ∈ R.

Since D commutes with σ such that D(z) ̸= 0 and I ̸= 0 is a σ-ideal then, by
Lemma A we have

F (y)r = rF (y), ∀ x, y, z ∈ I r ∈ R.

Therefore F |I is an homomorphism. Using (i) we getD = 0. This is a contradiction,
so that D|I = 0. In this situation, we have

F (x)zy = F (xz)y = F (z)F (x)y

= F (z)F (xy) = F (xyz) = F (x)yz, ∀ x, y, z ∈ I.

i.e.

F (x)w(zy − yz) = 0, ∀ x, y, z, w ∈ I.
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or

F (x)I(zy − yz) = 0, ∀ x, y, z, w ∈ I.

Since F commutes with σ and I be a σ-ideal then, by Lemma A we have F (x) = 0
for all x ∈ I or zy = yz, for all y, z ∈ I. The second case implies that R is
commutative and F |I is homomorphism. Using (i), we get F (x) = x for all x ∈ I or
F = 0 on R. Finally, we get, as in (i) that D = 0 on R. This completes the proof.
2

We can close this paper with some examples which shows that the restrictions
in the hypothesis of several results are not superfluous.

Example 2.6. Let R =

{ 0 a b
0 0 0
0 c 0

 : a, b, c ∈ S

}
and I =

{ 0 0 0
0 0 0
0 c 0

 :

b ∈ S

}
, where S is a non commutative ring. We define the following maps:

σ

 0 a b
0 0 0
0 c 0

 =

 0 b a
0 0 0
0 c 0

 , F

 0 a b
0 0 0
0 c 0

 =

 0 a 0
0 0 0
0 0 0

 and

D

 0 a b
0 0 0
0 c 0

 =

 0 0 0
0 0 0
0 c 0

. Then it can be seen easily that R is a non

commutative ring with involution σ and I is a σ-ideal of R. It is straightforward
to check that F and D satisfy all the requirements of Theorem 2.1, but neither
F [X,A] = 0 nor A /∈ Z(R).

Example 2.7. Let G = {a1 + a2i + a3j + a4k : a1, a2, a3, a4 ∈ R}, where i, j, k
comes from the Quaternion group Q8, and multiply accordingly, form a ring under

natural addition and multiplication. Consider H =

{ 0 a b
0 0 0
0 c 0

 : a, b, c ∈ G

}

and I =

{ 0 0 b
0 0 0
0 0 0

 : b ∈ G

}
. We define the following maps:

σ

 0 a b
0 0 0
0 c 0

 =

 0 −a b
0 0 0
0 −c 0

 , F

 0 a b
0 0 0
0 c 0

 =

 0 0 b
0 0 0
0 0 0

 and

D

 0 a b
0 0 0
0 c 0

 =

 0 0 0
0 0 0
0 −c 0

. Then it can be seen easily that R is a non-

commutative ring with involution σ and I is a σ-ideal of R. It is straightforward
to check that F and D satisfy all the requirements of Theorem 2.2, but neither
[F (X), A] = 0 nor A /∈ Z(R).
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Example 2.8. Let R =

{ 0 a b
0 0 c
0 0 0

 : a, b, c ∈ Z

}
and I =

{ 0 0 b
0 0 0
0 0 0

 :

b ∈ Z

}
. We define the following maps:

σ

 0 a b
0 0 c
0 0 0

 =

 0 −a b
0 0 −c
0 0 0

 , F

 0 a b
0 0 c
0 0 0

 =

 0 a 0
0 0 0
0 0 0

 and

D

 0 a b
0 0 c
0 0 0

 =

 0 0 0
0 0 −c
0 0 0

. Then it can be seen easily that R is a ring

with involution σ and I is a σ-ideal of R. It is straightforward to check that F and
D satisfy all the requirements of Theorem 2.5, but neither D = F = 0 nor F is an
identity map.
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