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Abstract. As a vector space provides a fundamental tool for the study of Euclidean

geometry, a gyrovector space provides an algebraic tool for the study of hyperbolic ge-

ometry. In general, the gyrovector spaces do not satisfy the distributivity with scalar

multiplication. In this article, we see under what condition the distributivity with scalar

multiplication is satisfied.

1. Introduction

In order to provide an algebraic tool to study Einstein’s relativistic velocity
sum, A. A. Ungar [2] has introduced a notion of gyrogroup and has developed to-
gether the study of analytic hyperbolic geometry. The gyrogroup is a most natural
extension of a group into the nonassociative algebra. The associativity (and the
commutativity) of group operations is salvaged in a suitably modified form, called
a gyroassociativity (and a gyrocommutativity). In Section 2 we introduce a notion
of (gyrocommutative) gyrogroup with its examples.

Later on it is known that gyrocommutative gyrogroups are equivalent to Bruck
loops (see [1]). To elaborate a precise language, we prefix a gyro to terms that de-
scribe concepts in Euclidean geometry to mean the analogous concepts in hyperbolic
geometry. The prefix gyro stems from Thomas gyration, which is the mathematical
abstraction of a special relativistic effect known as Thomas precession.

Some gyrocommutative gyrogroups give rise to gyrovector spaces just as some
commutative groups give rise to vector spaces. Let (G,⊕,⊗) be a gyrovector space
(see a definition of gyrovector space in Section 3), and let x, y ∈ G. In general,
gyroaddition ⊕ does not distribute with scalar multiplication such as

t⊗ (x⊕ y) ̸= t⊗ x⊕ t⊗ y.
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We investigate in Section 4 under what condition the above distributivity is satisfied.

2. Gyrocommutative Gyrogroups

We start with the axioms of gyrogroup introduced by A. Ungar [2]. His axioms
are reminiscent of those for a group, but gyrogroup operations are nonassociative
in general.

Definition 2.1. A triple (G,⊕, 0) is a gyrogroup if the following axioms are satisfied
for all a, b, c ∈ G.

(G1) 0⊕ a = a⊕ 0 = a (existence of identity);

(G2) a⊕ (−a) = (−a)⊕ a = 0 (existence of inverses);

(G3) There is an automorphism gyr[a, b] : G → G for each a, b ∈ G such that

a⊕ (b⊕ c) = (a⊕ b)⊕ gyr[a, b]c (gyroassociativity);

(G4) gyr[0, a] = id;

(G5) gyr[a⊕ b, b] = gyr[a, b] (loop property).

We call gyr[a, b] the gyroautomorphism or Thomas gyration generated by a and
b. From (G2) and (G3) we have

(2.1) gyr[a, b]c = ⊖(a⊕ b)⊕ [a⊕ (b⊕ c)] = L−1
a⊕bLaLb(c)

for all a, b, c ∈ G, where Lx denotes a left translation by x ∈ G.

Definition 2.2. A gyrogroup (G,⊕) is gyrocommutative if it satisfies

a⊕ b = gyr[a, b](b⊕ a) (gyrocommutativity).

We consider the basic characterizations of gyrocommutative gyrogroups.

Lemma 2.1. Let (G,⊕) be a gyrogroup. Then the following are equivalent.

(1) G is gyrocommutative.

(2) G satisfies the automorphic inverse property; ⊖(a⊕ b) = ⊖a⊖ b.

(3) G satisfies the Bruck identity; (a⊕ b)⊕ (a⊕ b) = a⊕ (b⊕ (b⊕ a)).

Proof. The equivalence of (1) and (2) has been proved in [2, Theorem 3.2].

(1) ⇒ (3) Assume that a gyrogroup (G,⊕) is gyrocommutative. Then for any
a, b ∈ G

a⊕ b = gyr[a, b](b⊕ a).
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From the equation (2.1) we have gyr[a, b] = L−1
a⊕bLaLb, where Lx is a left

translation by x. Thus,

(a⊕ b)⊕ (a⊕ b) = La⊕b(a⊕ b)

= La⊕bgyr[a, b](b⊕ a)

= La⊕bL
−1
a⊕bLaLb(b⊕ a)

= LaLb(b⊕ a)

= a⊕ (b⊕ (b⊕ a)).

(3) ⇒ (1) Assume that a gyrogroup (G,⊕) satisfies the Bruck identity;

(a⊕ b)⊕ (a⊕ b) = a⊕ (b⊕ (b⊕ a)).

It can be replaced by

La⊕b(a⊕ b) = LaLb(b⊕ a).

It is known that a left translation Lx is a bijection with inverse L−1
x = L⊖x.

So we have

a⊕ b = L−1
a⊕bLaLb(b⊕ a).

By the equation (2.1) we obtain a⊕ b = gyr[a, b](b⊕ a).

2

We give some examples of gyrocommutative gyrogroups.

Example 2.1. Let V be a complex vector space equipped with inner product ⟨, ⟩.
Let

Vs = {v ∈ V : ∥v∥ < s}

be the open s-ball, where s is an arbitrary fixed positive constant. Define the binary
operation ⊕E in Vs by

u⊕E v =
1

1 +
⟨u,v⟩
ss

{
u+

1

γu
v +

γu
s2(1 + γu)

⟨u,v⟩u
}

for any u,v ∈ Vs, where γu is the Lorentz factor such that

γu =
1√

1− ⟨u,v⟩
ss

.

The binary system (Vs,⊕E) forms a gyrocommutative gyrogroup, called the stan-
dard relativistic gyrogroup or the Einstein gyrogroup.
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Example 2.2. Let P be the open convex cone of all positive definite Hermitian
matrices with fixed dimension. Define the binary operation ⊙ in P by

A⊙B = A1/2BA1/2

for any A,B ∈ P. Then the binary system (P,⊙) forms a gyrocommutative gy-
rogroup, and the gyroautomorphism generated by A and B is given by

(2.2) gyr[A,B]C = U(A1/2, B1/2)CU(A1/2, B1/2)−1,

where U(A1/2, B1/2) = (A1/2BA1/2)−1/2A1/2B1/2 is a unitary part of the polar
decomposition for A1/2B1/2 such that

A1/2B1/2 = (A⊙B)1/2U(A1/2, B1/2).

3. Gyrovector Spaces

In this section we give a definition of (topological) gyrovector spaces, slightly
different from the definition of gyrovector spaces introduced by A. Ungar in [2,
Chapter 6].

Definition 3.1. A gyrovector space consists of a gyrocommutative gyrogroup
(G,⊕) equipped with a scalar multiplication

(t, x) 7→ t⊗ x : R×G → G

satisfying the following: for any s, t ∈ R and a, b, x ∈ G

(S1) 1⊗ x = x, 0⊗ x = 0 = t⊗ 0, and (−1)⊗ x = ⊖x;

(S2) (s+ t)⊗ x = s⊗ x⊕ t⊗ x;

(S3) s⊗ (t⊗ x) = (st)⊗ x;

(S4) gyr[a, b](t⊗ x) = t⊗ gyr[a, b]x.

Definition 3.2. A topological gyrovector space is a gyrovector space (G,⊕,⊗)
equipped with Hausdorff topology such that both ⊕ : G×G → G and ⊗ : R×G → G
are continuous.

Example 3.1. In the open s-ball Vs of a complex vector space V equipped with
inner product ⟨, ⟩ we define

t⊗ v =

 s tanh

(
t tanh−1 ∥v∥

s

)
v

∥v∥
, v ̸= 0;

0, v = 0.

for any t ∈ R. Then (Vs,⊕E ,⊗) is a gyrovector space, called the Einstein gyrovector
space.
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Example 3.2. On the open convex cone P of positive definite Hermitian matrices,
we define

t ⋆ A = At

for any t ∈ R and A ∈ P. Then (P,⊙, ⋆) is a gyrovector space. Indeed, let us check
(S4). For any A,B,X ∈ P

gyr[A,B](t⊗X) = U(A1/2, B1/2)XtU(A1/2, B1/2)−1

= U(A1/2, B1/2) exp(t logX)U(A1/2, B1/2)−1

= exp[t logU(A1/2, B1/2)XU(A1/2, B1/2)−1]

= [U(A1/2, B1/2)XU(A1/2, B1/2)−1]t = t⊗ gyr[A,B]X.

4. Distributivity

Let (G,⊕,⊗) be a topological gyrovector space, and let x, y ∈ G. In general,
gyroaddition ⊕ does not distribute with scalar multiplication such as

t⊗ (x⊕ y) ̸= t⊗ x⊕ t⊗ y.

We here investigate under what condition the above distributivity is satisfied.

Lemma 4.1. For any natural numbers m and n the following are equivalent.

(i) gyr[x, y] = I.

(ii) gyr[m⊗ x, n⊗ y] = I.

Proof. It is enough to show (i) ⇒ (ii), and we use the induction for n and for m.
We assume that gyr[x, y] = I, that is, x⊕ y = y ⊕ x by gyrocommutativity.

Suppose that gyr[x, (n− 1)⊗ y] = I, or x⊕ (n− 1)⊗ y = (n− 1)⊗ y⊕ x. Then
by gyroassociativity

x⊕ n⊗ y = x⊕ {y ⊕ (n− 1)⊗ y}
= (x⊕ y)⊕ (n− 1)⊗ y

= (y ⊕ x)⊕ (n− 1)⊗ y

= y ⊕ {x⊕ (n− 1)⊗ y}
= y ⊕ {(n− 1)⊗ y ⊕ x}
= n⊗ y ⊕ x.

We now use the induction form. From the preceding we have shown gyr[x, n⊗y] = I
when m = 1. Suppose that gyr[(m − 1) ⊗ x, n ⊗ y] = I, or (m − 1) ⊗ x ⊕ n ⊗ y =
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n⊗ y ⊕ (m− 1)⊗ x. Then by gyroassociativity

m⊗ x⊕ n⊗ y = {x⊕ (m− 1)⊗ x} ⊕ n⊗ y

= x⊕ {(m− 1)⊗ x⊕ n⊗ y}
= x⊕ {n⊗ y ⊕ (m− 1)⊗ x}
= {x⊕ n⊗ y} ⊕ gyr[x, n⊗ y](m− 1)⊗ x

= {n⊗ y ⊕ x} ⊕ (m− 1)⊗ x

= n⊗ y ⊕m⊗ x. 2

Remark 4.1. On a gyrovector space (G,⊕,⊗) each element x has a unique n th

root in G, denoted by
1

n
⊗ x. From Lemma 4.1 we have an alternative version of

equivalence.

(i) gyr[x, y] = I.

(ii) gyr

[
1

m
⊗ x,

1

n
⊗ y

]
= I.

Proposition 4.1. For any integer n the following are equivalent.

(i) gyr[x, y] = I.

(ii) n⊗ (x⊕ y) = n⊗ x⊕ n⊗ y.

Proof. First, we show that (i) ⇒ (ii) by induction for natural number n. Obviously
(ii) holds for n = 0 and n = 1. We assume that (ii) holds for n = k − 1. Then

k ⊗ (x⊕ y) = (x⊕ y)⊕ (k − 1)⊗ (x⊕ y)

= (x⊕ y)⊕ (k − 1)⊗ (y ⊕ x)

= (x⊕ y)⊕ {(k − 1)⊗ y ⊕ (k − 1)⊗ x}
= x⊕ [y ⊕ {(k − 1)⊗ y ⊕ (k − 1)⊗ x}]
= x⊕ {k ⊗ y ⊕ (k − 1)⊗ x}
= x⊕ gyr[k ⊗ y, (k − 1)⊗ x]{(k − 1)⊗ x⊕ k ⊗ y}
= x⊕ {(k − 1)⊗ x⊕ k ⊗ y}
= k ⊗ x⊕ k ⊗ y.

The second equality follows from (i) gyr[x, y] = I, the third follows from the as-
sumption, the fourth, the fifth, and the last follow from the gyroassociativity, the
sixth follows from the gyrocommutativity, and the seventh follows from Lemma 4.1.

Secondly, we show that (i) ⇒ (ii) for negative integer n. We take n = −p for
some positive integer p. Then

n⊗ (x⊕ y) = p⊗ {(−1)⊗ (x⊕ y)}
= p⊗ {(−x)⊕ (−y)}
= p⊗ (−x)⊕ p⊗ (−y)

= n⊗ x⊕ n⊗ y.
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The second equality follows from the automorphic inverse property, and the third
follows from (ii) for natural number p and gyr[−x,−y] = gyr[x, y] = I.

Finally, we show that (ii) ⇒ (i). For any x and
1

2
⊗ y, (ii) gives us

2⊗
(
x⊕ 1

2
⊗ y

)
= 2⊗ x⊕ y.

By Bruck identity and the gyroassociativity we have

2⊗
(
x⊕ 1

2
⊗ y

)
= x⊕

{
1

2
⊗ y ⊕

(
1

2
⊗ y ⊕ x

)}
= x⊕ (y ⊕ x).

Then x⊕ (y⊕ x) = 2⊗ x⊕ y = x⊕ (x⊕ y). By the left cancellation, y⊕ x = x⊕ y,
and hence, we obtain (i) gyr[x, y] = I. 2

Remark 4.2. From Remark 4.1 and Proposition 4.1 we obtain the equivalence for
any nonzero integer n:

(i) gyr[x, y] = I,

(ii)
1

n
⊗ (x⊕ y) =

1

n
⊗ x⊕ 1

n
⊗ y.

We finally see that the property gyr[x, y] = I is a sufficient and necessary
condition to satisfy

t⊗ (x⊕ y) = t⊗ x⊕ t⊗ y

for any real number t.

Theorem 4.1. Let (G,⊕,⊗) be a topological gyrovector space, and let x, y ∈ G.
The following are equivalent for any real number t.

(i) gyr[x, y] = I.

(ii) t⊗ (x⊕ y) = t⊗ x⊕ t⊗ y.

Proof. It is enough to show that (i) ⇒ (ii) for any dyadic rational number t =
m

2n
,

where n is a natural number and m is an integer, since the set of all dyadic rational
numbers is dense in the set of real numbers and the scalar multiplication ⊗ is
continuous.

m

2n
⊗ (x⊕ y) = m⊗

{
1

2n
⊗ (x⊕ y)

}
= m⊗

(
1

2n
⊗ x⊕ 1

2n
⊗ y

)
=

m

2n
⊗ x⊕ m

2n
⊗ y.
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The second equality follows from Remark 4.1, and the third follows from Proposi-
tion 4.1. 2
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