DOI QR코드

DOI QR Code

HOW THE PARAMETER ε INFLUENCE THE GROWTH RATES OF THE PARTIAL QUOTIENTS IN GCFε EXPANSIONS

  • Zhong, Ting (Department of Mathematics Jishou University) ;
  • Shen, Luming (Science College Hunan Agricultural University)
  • Received : 2014.09.28
  • Published : 2015.05.01

Abstract

For generalized continued fraction (GCF) with parameter ${\epsilon}(k)$, we consider the size of the set whose partial quotients increase rapidly, namely the set $$E_{\epsilon}({\alpha}):=\{x{\in}(0,1]:k_{n+1}(x){\geq}k_n(x)^{\alpha}\;for\;all\;n{\geq}1\}$$, where ${\alpha}$ > 1. We in [6] have obtained the Hausdorff dimension of $E_{\epsilon}({\alpha})$ when ${\epsilon}(k)$ is constant or ${\epsilon}(k){\sim}k^{\beta}$ for any ${\beta}{\geq}1$. As its supplement, now we show that: $$dim_H\;E_{\epsilon}({\alpha})=\{\frac{1}{\alpha},\;when\;-k^{\delta}{\leq}{\epsilon}(k){\leq}k\;with\;0{\leq}{\delta}<1;\\\;\frac{1}{{\alpha}+1},\;when\;-k-{\rho}<{\epsilon}(k){\leq}-k\;with\;0<{\rho}<1;\\\;\frac{1}{{\alpha}+2},\;when\;{\epsilon}(k)=-k-1+\frac{1}{k}$$. So the bigger the parameter function ${\epsilon}(k_n)$ is, the larger the size of $E_{\epsilon}({\alpha})$ becomes.

Keywords

References

  1. K. J. Falconer, Fractal Geometry, Mathematical Foundations and Application, Wiley, 1990.
  2. F. Schweiger, Continued fraction with increasing digits, Oster Akad. Wiss. Math.-Natur. Kl. Sitzungsber. II 212 (2003), 69-77.
  3. L. M. Shen and Y. Zhou, Some metric properties on the GCF fraction expansion, J. Number Theory 130 (2010), no. 1, 1-9. https://doi.org/10.1016/j.jnt.2009.06.011
  4. J. Wu, How many points have the same Engel and Sylvester expansions, J. Number Theory 103 (2003), no. 1, 16-26. https://doi.org/10.1016/S0022-314X(03)00017-9
  5. T. Zhong, Metrical properties for a class of continued fractions with increasing digits, J. Number Theory 128 (2008), no. 6, 1506-1515. https://doi.org/10.1016/j.jnt.2007.03.014
  6. T. Zhong and L. Tang, The growth rate of the partial quotients in a class of continued fractions with parameters, J. Number Theory 145 (2014), 388-401. https://doi.org/10.1016/j.jnt.2014.06.012

Cited by

  1. How the dimension of some GCF ϵ sets change with proper choice of the parameter function ϵ ( k ) vol.174, 2017, https://doi.org/10.1016/j.jnt.2016.10.013
  2. Some dimension relations of the Hirst sets in regular and generalized continued fractions vol.167, 2016, https://doi.org/10.1016/j.jnt.2016.03.017
  3. Dimension of level sets in GCF expansion with parameters vol.180, 2017, https://doi.org/10.1016/j.jnt.2017.06.002