참고문헌
- S. S. Kim, K. S. Han, B. S. Kim, S. K. Park and S. K. Ahn, "An Empirical Study on Users' Intention to Use Mobile Applications", Journal of Korean Institute of Information Technology, Vol. 9, No. 8, pp. 213-228, Aug. 2011.
- J. M. Lim, J. Y. Yu, S. J. Jang, J. H. Lee and J. M. Yu, "Survey on the Internet Usage", Korea Internet & Security Agency, pp. 284, Dec. 2013.
- S. Y. Park, J. Chang, and T. Kihl, "Document Classification Model using Web Documents for Balancing Training Corpus Size per Category," Journal of Information and Communication Convergence Engineering, Vol. 11, No. 4, Dec. 2013.
- J. Heo, S. Y. Park, "Word Cluster-based Mobile Application Categorization", Journal of The Korea Society of Computer and Information, Vol. 19, No. 3, pp.17-24, Mar. 2014. https://doi.org/10.9708/jksci.2014.19.3.017
- H. S. Lim, "Development Trends and Construction of an Automatic Document Classifier", Journal of Internet Computing and Services, Vol. 3, No. 3, pp. 48-56, Sep. 2002.
- Y. Yang, J. O. Pedersenm, "A Comparative Study on Feature Selection in Text Categorization", Proc. of the International Conference in Machine Learning, pp. 412-420, July. 1997.
- J. P. Moon, W. S. Lee, J. H. Chang, "A Proper Folder Recommendation Technique using Frequent Itemsets for Efficient e-mail Classification," Journal of the Korea Society of Computer and Information, Vol. 16, No. 2, pp. 33-46, Feb. 2011. https://doi.org/10.9708/jksci.2011.16.2.033
- C. Apte and F. Damerau, "Automated Learning of Decision Rules for Text Categorization", ACM Trans. on Information Systems, Vol. 12, No. 3, pp. 223-251, July. 1994.
- E. Weiner, J. O. Pedersenm and A. S. Weigned, "A Neural Network Approach to Topic Spotting", Proc. of the Annual Symposium on Document Analysis and Information Retrieval, pp.317-332, Apr. 1995.
- T. Joachims, "Text Categorization with Support Vector Machines : Learning with many relevant features", Proc. of International Conference on Machine Learning, pp. 137-142, July. 1998.
- Y. S. Hwang, J. C. Moon, S. J. Cho, "Classification of Malicious Web Pages by Using SVM," Journal of the Korea Society of Computer and Information, Vol. 17, No. 3, pp. 77-83, Mar. 2012. https://doi.org/10.9708/jksci.2012.17.3.077
- D. W. Noh, S. Y. Lee and D. Y. Ra, "Developing a Text Categorization System Based on Unsupervised Learning Using an Information Retrieval Technique", Journal of KIISE : Computer Systems and Theory, Vol. 34, No. 2, pp. 160-168, Feb. 2007.
- P. Liang, D. Klein, "Online EM for unsupervised models", Proc. of Human Language Technologies: The Annual Conference of the North American Chapter of the Association for Computational Linguistics, pp. 611-619, Jun. 2009.
- O. Zamir, "Fast and Intuitive Clustering of Web Documents," Proc. of the International Conference on Knowledge Discovery and Data Mining, pp. 287-290, Aug. 1997.
- O. Zamir and O. Etzioni, "Web Document Clustering: A Feasibility Demonstration," Proc. of ACM SIGIR, pp.46-54, Aug. 1998.
- O. Zamir and O. Etzioni, "Grouper: A Dynamic Clustering Interface to Web Search Results," Proc. of the International World Wide Web Conference, pp.1361-1374, May. 1999.
- G. Wei, "Named Entity Recognition and An Apply on Document Clustering," MSCs thesis, Dalhousie University, Oct. 2004.
- H. Toda and R. Kataoka, "A Search Result Clustering Method Using Informatively Named Entities," Proc. of ACM International workshop on WIDM, pp.81-86, Nov. 2005.
- K. Y. Sung and B. H. Yun, "Topic based Web Document Clustering using Named Entities", Journal of the Korea Contents Association, Vol. 10, No. 5, pp. 29-36, May. 2010. https://doi.org/10.5392/JKCA.2010.10.5.029
- D. H. Kim, K. H. Joo and J. T. Choi, "An Effective Content Clustering Method for the Large Documents", Proceedings of KIIT Summer Conference, Hanbat National University, Korea, pp. 289-297, Jun. 2006.
- J. C. Shin and C. Y. Ock, "Search Results Clustering In Real-time", Korea Computer Congress 2009, Mokpo National Maritime University, Korea, pp. 474-479, Jun. 2009.
- H. G. Yoon, S. Kim, and S. B. Park, "Noise Elimination in Mobile App Descriptions based on Topic Model," in Proceeding of the Conference on Human & Cognitive Language Technology, pp.64-68, Oct. 2013.
- S. Z. Lee, J. I. Tsujii, and H. C. Rim, "Hidden Markov Model-based Korean Part-of-Speech Tagging Considering High Agglutinativity, Word-spacing, and Lexical Correlativity," in Proceedings of the 38th Annual Meeting on Association for Computational Linguistics, pp. 384-391, Oct. 2000.
- J. A. Hartigan, and M. A. Wong, "A K-means Clustering Algorithm", Applied. Statistics, Vol. 28, No. 1, pp.100-108, Mar. 1979. https://doi.org/10.2307/2346830