DOI QR코드

DOI QR Code

Preparation and characterization of Mn-Co-Ni NTC thermistor

Mn-Co-Ni계 NTC 서미스터 제조 및 특성

  • Lee, Jung-Il (Department of Materials Science and Engineering, Korea National University of Transportation) ;
  • Kim, Tae Wan (Department of Materials Science and Engineering, Korea National University of Transportation) ;
  • Shin, Ji Young (Department of Materials Science and Engineering, Korea National University of Transportation) ;
  • Ryu, Jeong Ho (Department of Materials Science and Engineering, Korea National University of Transportation)
  • 이정일 (한국교통대학교 신소재공학과) ;
  • 김태완 (한국교통대학교 신소재공학과) ;
  • 신지영 (한국교통대학교 신소재공학과) ;
  • 류정호 (한국교통대학교 신소재공학과)
  • Received : 2015.03.31
  • Accepted : 2015.04.10
  • Published : 2015.04.30

Abstract

Mn-Co-Ni oxide system has been used as the NTC thermistors for normal temperature applications. Mn-Co-Ni oxide-based thermistors were sintered at different temperatures for a constant processing time from 900 to $1300^{\circ}C$ for 3 h. The crystal structure, bulk density, microstructure and chemical composition were characterized by XRD, FE-SEM and WD-XRF. The plot of the resistance versus measuring temperature was characterized for the sintered sample at the $1250^{\circ}C$. Moreover, the relationship between log resistivity and reciprocal of absolute temperature of the NTC thermistor was investigated.

상온용 NTC 서미스터로는 주로 Mn-Co-Ni 산화물계가 주료 사용된다. 본 연구에서는 Mn-Co-Ni 산화물계 분말을 이용하여 상온에서 가압 성형하여 $900{\sim}1300^{\circ}C$ 온도범위에서 3시간 동안 소결하여 서미스터 소자를 제작하였다. 소결온도에 따른 서미스터 세라믹 샘플의 상변화, 소결밀도, 미세구조 및 원소함량비 변화를 고찰하였다. $1250^{\circ}C$에서 소결된 Mn-Co-Ni 서미스터 소자에 대하여 온도에 대한 저항특성을 측정하였으며, 측정되는 절대온도의 역수와 저항의 로그함수값에 대한 변화를 고찰하였다.

Keywords

References

  1. H. Takuoki, K. Takayuki and M. Yoshihiro, "New thermistor materials", National Technical Report (1982) 1123.
  2. J.-R. Yoon, J.-G. Kim, J.-Y. Kwon, H.-Y. Lee and S.-W. Kee, "Electrical properties as the ratio of $ZnO/Mn_3O_4$ of NTC thermistor with $Mn_3O_4-NiO-CuO-Co_3O_4-ZnO$ system for inrush current limited", J. Kor. Inst. E & E Mat. Eng. 13(6) (2000) 472.
  3. K. Uh, C.S. Kim and S.M. Shin, "Properties and applications of NTC thermistor", J. Electronic Engineering Soc. 21(8) (1994) 19.
  4. K.-C. Chang, Y.-S. Han, K.-S. Yang, C.-K. Lee and H.-G. Kim, "A study of interface reaction and co-firing characteristics between Mn-spinel and Fe-spinels", J. Kor. Ceram. Soc. 37(10) (2000) 994.
  5. A. Rousset, R. Legros and A. Lagrange, "Recent progress in the fabrication of ceramics negative temperature coefficient termistors", J. European Ceram. Soc. 13 (1994) 185. https://doi.org/10.1016/0955-2219(94)90027-2
  6. M. Suzuki, "AC hopping condcution in Mn-Co-Ni-Cu complex oxide semiconductors with spinel structure", J. Phys. Chem. Solids 41 (1980) 1253. https://doi.org/10.1016/0022-3697(80)90160-2
  7. E.G. Larson, R.J. Arnott and D.G. Wickham, "Preparation, semiconduction and low temperature magnetization of the system $Ni_{1-x}Mn_{2+x}O_4$," J. Phys. Chem. Solids 23 (1962) 1771. https://doi.org/10.1016/0022-3697(62)90216-0
  8. B. Gillot, J.L. Baudour, F. Bouree, R. Metz, R. Legros and A. Rousset, "Ionic configuration and cation distribution in cubic nickel manganite spinels $Ni_xMn_{3-x}O_4(0.57 in relation with thermal histories", Solid State Ionics 58 (1992) 155. https://doi.org/10.1016/0167-2738(92)90022-H
  9. M. Reggio, "A linear ohmmeter for resistors having negative temperatrue coefficient", J. Phys. E: Sci. Instrum. 12 (1979) 173. https://doi.org/10.1088/0022-3735/12/3/005
  10. M. Faraday, "On conducting power generally" (Royal Institution, London, 1833) p. 119.
  11. S. Ruben, "Electrical pyrometer resistance", U.S. Patent #2021491 (1930).
  12. J. Amstel, "Electrical resistance material", U.S. Patent #2111708 (1935).
  13. D.S. Erickson and T.O. Mason, "Nonstoichiometry, cation distribution and electrical properties in $Fe_3O_4-CoFe_2O_4$ at high temperature", J. Solid State Chem. 59 (1985) 42. https://doi.org/10.1016/0022-4596(85)90348-2
  14. E.D. Macklen, "Electrical conductivity and cation distribution in nickel manganite", J. Phys. Chem. Solids 47 (1986) 1073. https://doi.org/10.1016/0022-3697(86)90074-0
  15. P. Fau, J.P. Bonino, J.J. Demai and J. Russet, "Thin films of nickel manganese oxide for NTC thermistor applications", Appl. Surf. Sci. 65/66 (1993) 319. https://doi.org/10.1016/0169-4332(93)90679-6
  16. A. Feteira, "Negative temperature coefficient resistance (NTCR) ceramic thermistors: An industrial perspective", J. Am. Ceram. Soc. 92(5) (2009) 967. https://doi.org/10.1111/j.1551-2916.2009.02990.x
  17. R. Metz, "Electrical properties of N.T.C. thermistors mad of manganite ceramics of general spinel structure", J. Mater. Sci. 35 (2000) 4705. https://doi.org/10.1023/A:1004851022668
  18. D. Houivet, J. Bernard and J.M. Haussonne, "High temperature NTC ceramic resistors", J. Eur. Ceram. Soc. 24(6) (2004) 1237. https://doi.org/10.1016/S0955-2219(03)00376-5

Cited by

  1. Crystal structure of Mn-Co-Ni thermistor vol.25, pp.5, 2015, https://doi.org/10.6111/JKCGCT.2015.25.5.225