DOI QR코드

DOI QR Code

Characterization of carbon microspheres grown by HVPE

HVPE 방법에 의해 성장된 탄소 마이크로구의 특성

  • Lee, Chanmi (Department of Electronic Material Engineering, Korea Maritime and Ocean University) ;
  • Jeon, Hunsoo (Department of Electronic Material Engineering, Korea Maritime and Ocean University) ;
  • Park, Minah (Department of Electronic Material Engineering, Korea Maritime and Ocean University) ;
  • Lee, Chanbin (Department of Electronic Material Engineering, Korea Maritime and Ocean University) ;
  • Yang, Min (Department of Electronic Material Engineering, Korea Maritime and Ocean University) ;
  • Yi, Sam Nyung (Department of Electronic Material Engineering, Korea Maritime and Ocean University) ;
  • Ahn, Hyung Soo (Department of Electronic Material Engineering, Korea Maritime and Ocean University) ;
  • Kim, Suck-Whan (Department of Physics, Andong National University) ;
  • Yu, Young Moon (LED-MCT R&BD Center, Pukyong National University) ;
  • Shin, Keesam (School of Nano & Advanced Materials Engineering, Changwoon National University) ;
  • Bae, Jong Seong (Korea Busan Center, Korea Basic Science Institute) ;
  • Lee, Hyo Suk (L&L. Co., Ltd.) ;
  • Sawaki, Nobuhiko (Department of Electrical and Electronics Engineering, AIT)
  • 이찬미 (한국해양대학교 전자소재공학과) ;
  • 전헌수 (한국해양대학교 전자소재공학과) ;
  • 박민아 (한국해양대학교 전자소재공학과) ;
  • 이찬빈 (한국해양대학교 전자소재공학과) ;
  • 양민 (한국해양대학교 전자소재공학과) ;
  • 이삼녕 (한국해양대학교 전자소재공학과) ;
  • 안형수 (한국해양대학교 전자소재공학과) ;
  • 김석환 (안동대학교 물리학과) ;
  • 유영문 (부경대학교 LED-MCT R&BD 센터) ;
  • 신기삼 (창원대학교 나노소재공학과) ;
  • 배종성 (한국기초과학연구소, 부산센터) ;
  • 이효석 ((주)엘앤엔) ;
  • 투고 : 2015.02.05
  • 심사 : 2015.03.20
  • 발행 : 2015.04.30

초록

The carbon microspheres of a core-shell type were grown by the method of mixed-source hydride vapor phase epitaxy (HVPE). The surface and the cross section of the carbon microsphere grown by a new method were observed by scanning electron microscope (SEM). The characteristics of the carbon microsphere were investigated by X-ray photoelectron spectroscopy (XPS) and a high resolution-transmission electron microscope (HR-TEM). From these measurements, the diameters of carbon sphere were about few hundred micrometers. Furthermore, we show that the carbon microsphere of the core-shell type by mixed-source HVPE method can be grown successfully with the larger size than those of the existing one. This mixed-source HVPE method is proposed a new method for making of carbon microsphere.

혼합소스 HVPE 방법을 사용하여 탄소 마이크로구를 합성하였다. 소스 물질로는 그래파이트 보트에 담겨 진 Ga, Al을 사용하였고 반응가스로 암모니아, 염산, 질소 가스를 사용하였다. 탄소 마이크로구의 합성은 $1090^{\circ}C$에서 실시하였다. 질소 가스는 5000, 염산 가스는 80, 암모니아 가스는 2000 sccm으로 공급되며 반응 시간은 3시간으로 하였다. 탄소 마이크로구의 SEM 측정 결과 수백 ${\mu}m$의 지름을 가지고 매끈한 표면을 가지는 완전한 구형 모양을 가짐을 알 수 있었다. XPS 결과 탄소 마이크로구의 내부는 탄소 71.78 wt%, 산소 15.37 wt%, 황 0.32 wt%, 규소 1.97 wt%로 구성되어 있었다. 또한 TEM 분석을 통해 탄소 마이크로구가 비정질임을 알 수 있었다. 탄소 마이크로구가 합성된 것은 에피 성장 과정 중에 배양판과 같이 홈이 파져 있는 공간에서 가스 간의 흡착 반응에 의해 탄소 마이크로구의 성분들이 합성된 것으로 판단된다.

키워드

참고문헌

  1. X. Liu, B. Huang and Neil. J. Coville, "The $Fe(CO)_5$ catalyzed pyrolysis of pentane: carbon nanotube and carbon nanoball formation", Carbon 40 (2002) 2791. https://doi.org/10.1016/S0008-6223(02)00193-8
  2. D. Ugarrte, "Curling and closure of graphitic networks under electron-beam irradiation", Nature 359 (1992) 707. https://doi.org/10.1038/359707a0
  3. A. de Heer and D. Ugarte, "Carbon onions produced by heat treatment of carbon soot and their relation to the 217.5 nm interstellar absorption feature", Chem. Phys. Lett. 207 (1993) 408.
  4. Z.C. Kang and Z.L. Wang, "Mixed-valent oxide-catalytic carbonization for synthesis of monodispersed nano sized carbon spheres", Philos. MAG. B 73 (1996) 905. https://doi.org/10.1080/01418639608240322
  5. Z.C. Kang and Z.L. Wang, "On accretion of nanosize carbon spheres", J. Phys. Chem. B 100 (1996) 5163. https://doi.org/10.1021/jp9535809
  6. T. Stockli, J.M. Bonard, A. Chatelain, Z.L. Wang and P. Stadelmann, "Plasmon excitations in graphitic carbon spheres", Phys. Rev. B 57 (1998) 15599. https://doi.org/10.1103/PhysRevB.57.15599
  7. M. Sharon, K. Mukhopakhyay, K. Yase, S. Iijima, Y. Ando and X. Zhao, "Spongy carbon nanobeds-a new material", Carbon 36 (1998) 507. https://doi.org/10.1016/S0008-6223(98)00060-8
  8. J.B. Donnet, R.C. Bansal and M.J. Wang, "Carbon Black", 2nd edn. (Marcel Dekker, New York, USA, 1993) 1.
  9. T. Cabioc'h, E. Thune and M. Jaouen, "Carbon-onion thin-film synthesis onto silica substrates", Chem. Phys. Lett. 320 (2000) 202. https://doi.org/10.1016/S0009-2614(00)00212-8
  10. T. Cabioc'h and E. Thune, "Mechanisms involved in the formation of onionlike carbon nanostructures synthesized by ion implantation at high temperature", Phys. Rev. B 65 (2002) 3.
  11. N. Sano, H. Wang, M. Chhowalla, I. Alexandrou and G.A.J. Amaratunga "Nanotechnology: Synthesis of carbon 'onions' in water", Nature 414 (2001) 506.
  12. X.H. Chen, F.M. Deng, J.X. Wang, H.S. Yang, G.T. Wu, X.B. Zhang, J.C. Peng and W.Z. Li, "New method of carbon onion growth by radio-frequency plasma-enhanced chemical vapor deposition", Chem. Phys. Lett. 336 (2001) 201. https://doi.org/10.1016/S0009-2614(01)00085-9
  13. X.U Bing-she, "Prospects and research progress in nano onion-like fullerenes", New Carbon Mater 23 (2008) 289. https://doi.org/10.1016/S1872-5805(09)60001-9
  14. A. Nieto-Marquez, R. Romero, A. Romero and J.L. Valverde, "Carbon nanospheres: synthesis, physicochemical properties and applications", J. Mater. Chem. 21 (2011) 1664. https://doi.org/10.1039/C0JM01350A
  15. A.A. Deshmukh, S.D. Mhlanga and N.J. Coville, "Carbon spheres", Mater. Sci. Eng. R 70 (2010) 1. https://doi.org/10.1016/j.mser.2010.06.017
  16. C. Sasaoka, H. Sunakawa, A. Kimura, M. Nido, A. Usui and A. Sakai, "High-quality InGaN MQW on lowdislocation-density GaN substrate grown by hydride vapor-phase epitaxy", J. Crys. Growth 61 (1998) 189.
  17. X. Gong, K. Xu, J. Huang, T. Liu, G. Ren, J. Wang and J. Zhang, "Evolution of the surface morphology of AlN epitaxial film by HVPE", J. Cryst. Growth 409 (2015) 100. https://doi.org/10.1016/j.jcrysgro.2014.10.012
  18. S.T. Kim, Y.J. Lee, D.C. Moon, C.H. Hong and T.K. Yoo, "Preparation and properties of free-standing HVPE grown GaN substrates", J. Cryst. Growth 194 (1998) 37. https://doi.org/10.1016/S0022-0248(98)00551-X
  19. J.Y. Kim, G.S. Lee, M.A. Park, M.J. Shin, S.N. Yi, M. Yang, H.S. Ahn, Y.M. Yu, S.W. Kim, H.S. Lee, H.S. Kang, H.S. Jeon and N. Sawaki, "The growth of GaN on the metallic compound graphite substrate by HVPE", J. Korean Cryst. Growth Cryst. Technol. 23 (2013) 213. https://doi.org/10.6111/JKCGCT.2013.23.5.213
  20. S.G. Jung, H.S. Jeon, G.S. Lee, S.M. Bae, W.I. Yun, K.H. Kim, S.N. Yi, M. Yang, H.S. Ahn, S.W. Kim, Y.M. Yu, S.H. Cheon and H.J. Ha, "The properties of AlGaN epi layer grown by HVPE", J. Korean Cryst. Growth Cryst. Technol. 22 (2012) 11. https://doi.org/10.6111/JKCGCT.2012.22.1.011
  21. K.H. Kim, K.S. Jang, S.L. Hwang, H.S. Jeon, W.J. Choi, M. Yang, H.S. Ahn, S.W. Kim, Y. Honda, M. Yamaguchi, N. Sawaki, J. Yoo, S.M. Lee and M. Koike, "Fabrication of SAG-AlGaN/InGaN/AlGaN LEDs by mixed-source HVPE with multi-sliding boat system", Phys. Stat. Solidi (c) 4 (2007) 29. https://doi.org/10.1002/pssc.200673508
  22. S.L. Hwang, K.S. Jang, K.H. Kim, H.S. Jeon, H.S. Ahn, M. Yang, S.W. Kim, Y. Honda, M. Yamaguchi, N. Sawaki, J. Yoo, S.M. Lee and M. Koike, "Growth of InGaN layer on GaN templated Al2O3 (0001) and Si (111) substrates by mixed-source HVPE", Phys. Stat. Solidi (c) 4 (2007) 125. https://doi.org/10.1002/pssc.200673507
  23. C.H. Lee, S.L. Hwang, H.S. Jeon, S.H. Hong, I.H. Heo, Y.H. Han, E.J. Kim, K.H. Kim, H. Ha, H.S. Ahn, M. Yang, S.W. Kim and C.R. Cho, "Structural phase variation of InGaN micro-structures grown by using mixed source HVPE", J. Korean Phys. Soc. 54 (2009) 1257. https://doi.org/10.3938/jkps.54.1257