DOI QR코드

DOI QR Code

Implementation of Nano-Scale Grating-Assisted Coupler with Polarization-Insensitivity using Double-Sandwiched Guide

이중 샌드위치 도파로를 사용한 편광 무의존성 특성을 갖는 나노크기 격자 구조형 결합기의 구현

  • 호광춘 (한성대학교 정보통신공학과)
  • Received : 2014.09.01
  • Accepted : 2015.04.10
  • Published : 2015.04.30

Abstract

The polarization characteristics of nano-scale grating-assisted polarization-insensitive coupler (GA-PIC) consisted of double sandwiched rib-type layers are evaluated in detail by using modal transmission-line theory (MTLT) based on equivalent network. To obtain the polarization-insensitive condition of GA-PIC, the coupling lengths as a function of the refractive index and thickness of sandwiched rib-type layer as well as the grating thickness and period are analyzed for quasi-TE and quasi-TM modes. The numerical results show that the GA-PIC with hundreds of nanometer scale is realized by properly choosing structural and material parameters of double sandwiched layers and grating.

등가 전송선로에 기초한 모드 전송선로 이론 (Modal Transmission-Line Theory: MTLT)을 이용하여 이중 샌드위치 Rib-형 층으로 구성된 나노 크기의 격자 구조형 편광 무의존성 결합기 (Grating-Assisted Polarization-Insensitive Coupler: GA-PIC)의 편광특성을 자세하게 분석하였다. 제안한 나노 크기의 GA-PIC의 편광 무의존성 조건을 얻기 위하여 샌드위치 rib형 층의 굴절률과 두께에 따라 변하는 quasi-TE 모드와 quasi-TM 모드의 결합길이를 분석하였으며, 격자구조의 광학적 변수들인 격자두께와 격자주기에 따른 결합길이의 영향도 분석하였다. 수치해석 결과, 수백 나노미터 크기의 GA-PIC는 이중 샌드위치 층과 격자구조의 구조적, 물질적 변수들을 잘 선택함으로써 구현할 수 있음을 보였다.

Keywords

References

  1. T. Tsuchizawa, K. Yamada, H. Fukuda, and et al., "Microphotonics devices based on silicon microfabrication technology," IEEE J. Quantum Electron., vol. 11, pp. 232-240, 2005. https://doi.org/10.1109/JSTQE.2004.841479
  2. W. Bogaerts, R. Baets, P. Dumon, and et al., "Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology," IEEE J. Lightwave Technol., vol. 23, pp. 401-412, 2005. https://doi.org/10.1109/JLT.2004.834471
  3. T. Fujisawa and M. Koshiba, "Polarization independent optical directional coupler based on slot waveguides," Optics Letters, vol. 31, pp. 56-58, 2006. https://doi.org/10.1364/OL.31.000056
  4. J. Xiao, X. Liu, and X. Sun, "Design of polarization-independent optical couplers composed of three parallel slot waveguides," Applied Optics, vol. 47, pp. 2687-2695, 2008. https://doi.org/10.1364/AO.47.002687
  5. S. T. Peng and A. Oliner, "Guidance and Leakage Properties of a Class of Open Dielectric Waveguides: Part I-Mathematical Formulations," IEEE Trans. MTT, Vol. 29, No. 9, pp. 843-855, 1981. https://doi.org/10.1109/TMTT.1981.1130465
  6. K. C. Ho, and K. Ho, "Longitudinal Modal Transmission-Line Theory (L-MTLT) of Multilayered Periodic Waveguides," IEICE Trans. Electronics, Vol. E88-C, No. 2, pp. 270-274, 2005. https://doi.org/10.1093/ietele/E88-C.2.270
  7. K. C. Ho, "Diffraction Analysis of Multi-layered Grating Structures using Rigorous Equivalent Transmission-Line Theory," The J. of IWIT, Vol. 15, No. 1, pp. 261-267, 2015.
  8. J. O. Park and W. K. Jang, "Optical metrology for resonant surface acoustic wave in RF device," J. of the Korea Academia-Industrial cooperation Society, vol. 11, pp. 3435-3440, 2010. https://doi.org/10.5762/KAIS.2010.11.9.3435