DOI QR코드

DOI QR Code

Development of Longitudinal Dispersion Coefficient Based on Theoretical Equation for Transverse Distribution of Stream-Wise Velocity in Open Channel : Part I. Theoretical Equation for Stream-Wise Velocity

개수로에서 흐름방향 유속의 횡분포 이론식에 기반한 종분산계수 개발 : I. 흐름방향 유속의 횡분포

  • Baek, Kyong Oh (Dept. of Civil, Safety, and Environmental Engrg, Hankyong National Univ.)
  • 백경오 (국립한경대학교 공과대학 토목안전환경공학과)
  • Received : 2014.12.05
  • Accepted : 2015.03.11
  • Published : 2015.04.30

Abstract

The aim of this study is that a theoretical formula for estimating the one-dimensional longitudinal dispersion coefficient is derived based on a transverse distribution equation for the depth averaged stream-wise velocity in open channel. In "Part I. Theoretical equation for stream-wise velocity" which is the former volume of this article, the velocity distribution equation is derived analytically based on the Shiono-Knight Model (SKM). And then incorporating the velocity distribution equation into a triple integral formula which was proposed by Fischer (1968), the one-dimensional longitudinal dispersion coefficient can be derived theoretically in "Part II. Longitudinal dispersion coefficient" which is the latter volume of this article. SKM has presented an analytical solution to the Navier-Stokes equation to describe the transverse variations, and originally been applied to straight and nearly straight compound channel. In order to use SKM in modeling non-prismatic and meandering channels, the shape of cross-section is regarded as a triangle in this study. The analytical solution for the velocity distribution is verified using Manning's equation and applied to velocity data measured at natural streams. Although the velocity equation developed in this study do not agree well with measured data case by case, the equation has a merit that the velocity distribution can be calculated only using geometric data including Manning's roughness coefficient without any measured velocity data.

본 연구의 목적은 하천에서 흐름방향 유속의 횡분포식에 기반하여 1차원 종분산계수를 이론적으로 유도하고 이들의 타당성을 검증하는 것이다. 이를 위해 본 논문의 전편 "I. 흐름방향 유속의 횡포식"에서는 Shiono-Knight Model (일명 SKM)을 도입하여 삼각형 단면수로에서 횡분포식을 해석적으로 유도하였다. 본 논문의 후편 "II. 종분산계수"에서는 전편에서 유도된 유속의 횡분포식을 Fischer (1968)의 삼중 적분식에 대입하여 1차원 종분산계수 이론식을 새롭게 개발하였다. 본래 SKM은 Navier-Stokes 방정식을 근간으로 개발되어 주로 직선수로이면서 사다리꼴 단면이나 복단면 수로에 적용되어 왔지만, 본 연구에서는 사행으로인한 최심선의 변동을 고려할 수 있는 삼각형을 단면형상으로 가정하였다. 유도된 해석해를 검증하기 위해 자연하천에서 실측된 유속자료와 비교 분석하였다. 또한 유도된 횡분포식을 이용하여 단면평균유속을 산정하고, 이를 Manning의 유속식의 결과와 비교 검증하였다. 본 연구에서 개발한 이론식은 비록 유속의 횡분포를 경우에 따라서 섬세하게 재현하지는 못하더라도 조도계수를 포함한 몇 가지 기본적인 수리 및 지형자료만 측량한다면 유속의 관측없이 비교적 정확한 유속분포를 산출해 낼 수 있는 장점이 있었다.

Keywords

References

  1. Bogle, G.V. (1997). "Stream velocity profiles and logitudinal dispersion." Journal of Hydraulic Engineering, ASCE, Vol. 123, No. 9, pp. 816-820. https://doi.org/10.1061/(ASCE)0733-9429(1997)123:9(816)
  2. Chiu, C.L. (1987). "Entropy and probability concepts in hydraulics." Journal of Hydraulic Engineering, ASCE, Vol. 113, No. 5, pp. 583-600. https://doi.org/10.1061/(ASCE)0733-9429(1987)113:5(583)
  3. Chiu, C.L. (1988). "Entropy and 2D velocity distribution in open channels." Journal of Hydraulic Engineering, ASCE, Vol. 114, No. 7, pp. 738-755. https://doi.org/10.1061/(ASCE)0733-9429(1988)114:7(738)
  4. Chiu, C.L. (1989). "Velocity distribution in open channel flow." Journal of Hydraulic Engineering, ASCE, Vol. 115, No. 5, pp. 576-594. https://doi.org/10.1061/(ASCE)0733-9429(1989)115:5(576)
  5. Chiu, C.L. (1991). "Application of entropy concept in open channel flow study." Journal of Hydraulic Engineering, ASCE, Vol. 117, No. 5, pp. 615-628. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:5(615)
  6. Deng, Z., Singh, V.P., and Bengtsson, L. (2001). "Longitudinal dispersion coefficient in straight rivers." Journal of Hydraulic Engineering, ASCE, Vol. 127, No. 11, pp. 919-927. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:11(919)
  7. Godfrey, R.G., and Frederick, B.J. (1970). "Stream dispersion at selected sites." Professional Paper No. 433- K, US Geological Survey, Washington, D.C.
  8. Knight, D.W., Omran, M., and Tang, X. (2007). "Modeling depth-averaged velocity and boundary shear in trapezoidal channels with secondary flow." Journal of Hydraulic Engineering, ASCE, Vol. 133, No. 1, pp. 39-47. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:1(39)
  9. Liao, H., and Knight, D.W. (2007). "Analytic stage- discharge formula for flow in straight trapezoidal open channels." Advances in Water Resources, Vol. 30, pp. 2283-2295. https://doi.org/10.1016/j.advwatres.2007.05.002
  10. Omran, M. (2008). "New developments in predicting stage-discharge curves, velocity and boundary shear stress distributions in open channel flow." Water and Environment Journal, Vol. 22, pp. 131-136. https://doi.org/10.1111/j.1747-6593.2007.00091.x
  11. Seo, I.W., and Baek, K.O. (1999). "Modelling transverse velocity profile in natural streams." Journal of Korea Water Resources Association, Vol. 32, No. 5, pp. 593-601.
  12. Seo, I.W., and Baek, K.O. (2004). "Estimation of the longitudinal dispersion coefficient using the velocity profile in natural streams." Journal of Hydraulic Engineering, ASCE, Vol. 130, No. 3, pp. 227-236. https://doi.org/10.1061/(ASCE)0733-9429(2004)130:3(227)
  13. Seo, I.W., and Bhowmik, N.G. (1991). "Velocity distribution of the Illinois and Mississippi Rivers." Interim Report, Illinois States Water Survey.
  14. Seo, I.W., and Gadalrab, M.S. (1999). "Estimation of dispersion coefficient using different forms of lateral velocity distribution." Proceedings WEESHE-99 Conference, pp. 217-226.
  15. Shiono, K., and Knight, D.W. (1988). "Two dimensional analysis solution for a compound channel." Proceedings 3th International Symposium on Refined Flow Modelling and Turbulence Measurements, pp. 28.1.1- 28.1.6.
  16. Shiono, K., and Knight, D.W. (1991). "Turbulent openchannel flows with variable depth across the channel." Journal of Fluid Mechanics, Vol. 222, pp. 617-646. https://doi.org/10.1017/S0022112091001246
  17. Sun, X., and Shiono, K. (2009). "Flow resistance of on-line emergent vegetation along the floodplain edge of a compound open channel." Advances in Water Resources, Vol. 32, pp. 430-438. https://doi.org/10.1016/j.advwatres.2008.12.004
  18. Tang, X., and Knight, D.W. (2008). "A general model of lateral depth-averaged velocity distributions for open channel flows." Advances in Water Resources, Vol. 31, pp. 846-857. https://doi.org/10.1016/j.advwatres.2008.02.002