DOI QR코드

DOI QR Code

Micro-Shock Tube 유동에 대한 실험적 연구

Experimental Study of Micro-Shock Tube Flow

  • 박진욱 (한국건설기술연구원 화재안전연구소) ;
  • 김규완 (안동대학교 기계공학과) ;
  • ;
  • 김희동 (안동대학교 기계공학과)
  • Park, Jin-Ouk (Fire Research Center, Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Gyu-Wan (Dept. of Mechanical Engineering, Andong Nat'l Univ.) ;
  • Rasel, Md. Alim Iftakhar (Dept. of Mechanical Engineering, Andong Nat'l Univ.) ;
  • Kim, Heuy-Dong (Dept. of Mechanical Engineering, Andong Nat'l Univ.)
  • 투고 : 2014.01.23
  • 심사 : 2015.03.15
  • 발행 : 2015.05.01

초록

Micro shock tube에서 발생하는 비정상파 거동을 실험적으로 조사 하기위해 파막 실험을 수행하였다. 실험은 스테인리스 재질의 micro shock tube를 사용하였으며, 총 8개의 압력센서를 설치하여, 충격파관에서 발생하는 충격파 및 팽창파를 측정하였다. 초기 압력비는 6.3에서 30.5까지 변화시켰으며, 관의 직경은 3mm와 6mm로 하였다. 그리고 두 가지 재질의 격막을 사용하여 격막 조건을 다양하게 실험을 수행하였다. 그 결과로부터 초기 압력비 및 관 직경의 증가에 따라 관내에서 발생되는 충격파 강도는 커지며, 가장 얇은 재질의 격막 조건에서 가장 큰 충격파 강도가 발생했다. 그리고 충격파 감쇠는 관의 직경에 가장 큰 영향을 받았다.

The flow characteristics in micro shock tube are investigated experimentally. Studies were carried out using a stainless steel micro shock tube. Shock and expansion wave was measured using 8 pressure sensors. The initial pressure ratio was varied from 4.3 to 30.5, and the diameter of tube was also changed from 3mm to 6mm. Diaphragm conditions were varied using two types of diaphragms. The results obtained show that the shock strength in the tube becomes stronger for an increase in the initial pressure ratio and diameter of tube. For the thinner diaphragm, the highest shock strength was found among varied diaphragm condition. Shock attenuation was highly influenced by the diameter of tube.

키워드

참고문헌

  1. Park, J.O., Kim, G.Y. and Kim, H.D., 2013, "Experimental Study of the Shock Wave Dynamics in Micro Shock Tube," Journal of the Korean Society of Propulsion Engineers, Vol. 17, No. 5, pp. 54-59. https://doi.org/10.6108/KSPE.2013.17.5.054
  2. Mirshekari, G. and Brouillette, M., 2009, "One-Dimensional Model for Microscale Shock Tube Flow," Shock Waves, Vol. 19, pp. 25-38. https://doi.org/10.1007/s00193-009-0189-7
  3. Kim, H.D., 1994, "Shock Wave Phenomena in Fluid Engineerings(I)," Trans. of the KSME, Vol. 169, pp. 961-976.
  4. Rajesh, G., Kim, H.D., Setoguchi, T. and Raghunathan, S., 2007, "Performance Analysis and Enhancement of the Ballistic Range," Journal of Aerospace Science, Part G, Vol. 221, pp. 649-659.
  5. Arun, K.R. and Kim, H.D., 2012, "Computational Study of the Unsteady Flow Characteristics of a Micro Shock Tube," Journal of Mechanical Science and Technology, Vol. 27, No. 2, pp. 451-459. https://doi.org/10.1007/s12206-012-1259-9
  6. Arun, K.R. and Kim, H.D., 2004, "Numerical Visualization of the Unsteady Shock Wave Flow Field in Micro Shock Tube," Journal of the Korean Society of Visualization, Vol. 10, No. 1, pp. 40-46. https://doi.org/10.5407/JKSV.2011.10.1.040
  7. Liepmann, H. W. and Roshko, A., 2001, "Elements of Gasdynamics," Dover Books on Engineering.
  8. Xiao, H., Toshiyuki, A. and Naoya, T., 2012, "The Feature of Weak Shock Wave Propagated in a Overlong Tunnel," Open Journal of Fluid Dynamics, Vol. 2, No. 4A, pp. 285-289. https://doi.org/10.4236/ojfd.2012.24A034
  9. Harold, M., 1957, " Attenuation in a Shock Tube due to Unsteady-Boundary Layer Action," National Advisory Committee for Aeronautics Report 1993, pp. 1-19.
  10. Arun, K.R., Kim, H.D. and Setoguchi, T., 2012, "Computational Study on Micro Shock Tube Flows with Gradual Diaphragm Rupture Process," Open Journal of Fluid Dynamics, Vol. 2, No. 4A, pp. 235-241. https://doi.org/10.4236/ojfd.2012.24A027