DOI QR코드

DOI QR Code

피부 미백제를 함유한 안정한 o/w 나노에멀젼의 융복합형 화장품 이용

Application of Stable o/w Nanoemulsions with Skin Depigmenting Agent for Integration Type of Cosmetics

  • Cho, Wan-Goo (Dept. of Basic Medical Science, Jeonju University)
  • 투고 : 2015.02.09
  • 심사 : 2015.04.20
  • 발행 : 2015.04.28

초록

정제수/Span 80-Tween 80/화장품용 피부 미백제 계에서 PIC 방법을 이용하여 o/w 나노에멀젼을 제조하였다. 제조 온도를 30 oC에서 80 oC로 상승시킴에 따라 제조된 나노에멀젼의 입경은 150 nm에서 40 nm로 감소하여 나노에멀젼을 형성하였다. 혼합 계면활성제의 HLB를 변화함에 따라 13.0~14.0 부근에서 가장 작은 입경을 형성하는 최적 HLB가 존재하였다. 오일/유화제의 비율이 증가하면 에멀젼의 입자 크기가 증가하였다. $f{\leq}0.15$ 조건에서 나노에멀젼의 크기 분포는 2 개월 이상 일정하게 유지 되었다. 제조 온도의 증가는 단 분산 나노에멀젼의 제조를 가능하게 하였다. 나노에멀젼이 생성되면, Ostwald ripening에 대한 안정성은 연속 상에서 화장품용 피부 미백제의 매우 낮은 용해도로 인해 안정하였다.

Oil-in-water(o/w) nanoemulsions were prepared in the system of water/Span 80-Tween 80/long-chain paraffin oil via PIC method. With the increase of preparation temperature from 30 oC to 80 oC, the diameter of emulsion droplets decreased from 150 nm to 40 nm. By varying the HLB of mixed surfactants, we found that there was an optimum HLB around 13.0~14.0 corresponding to the minimum droplet size. The size of emulsion droplets increased upon increasing the ratio of oil/emulsifying agent. At $f{\leq}0.15$, the size of nanoemulsions could be kept constant more than 2 months. The increase in preparation temperature makes it possible for producing monodisperse nanoemulsions. Once the nanoemulsion is produced, the stability against Ostwald ripening is outstanding due to the extremely low solubility of the liquid paraffin oil in the continuous phase.

키워드

참고문헌

  1. S. Briganti, E. Camera, and M. Picardo, Chemical and instrumental approaches to treat hyperpigmentation, Pigment. Cell. Res., Vol. 16, No. 2, pp. 101-110, 2003. https://doi.org/10.1034/j.1600-0749.2003.00029.x
  2. W. G. Cho, C. T. Kim, S. H. Choi, and Y. K. Cha, Report of global cosmetic projects of Ministry of Health & Welfare, Republic of Korea (Project No. HN12C0056), 2014.
  3. C. Solans, P. Izquierdo, J. Nolla, N. Azemar, and M. J. Garcia-Celma, Nano-emulsions, Curr. Opin. Colloid Inter. Sci., Vol. 10, No. 3-4, pp. 102-110, 2005. https://doi.org/10.1016/j.cocis.2005.06.004
  4. C. Solans, I. Sole, A. Fernandez-Arteaga, J. Nolla, N. Azemar, J. M. Gutierrez, A. Maestro, C. Gonzalez, and C. M. Pey, in: Hidalgo-Alvarez Roque (Ed.), Surfactant Science Series, 146, Taylor and Francis Group, pp. 457, 2010.
  5. J. M. Gutierrez, C. Gonzalez, A. Maestro, I. Sole, C. M. Pey, and J. Nolla, Nano-emulsions: New applications and optimization of their preparation, Curr. Opin. Colloid Interf. Sci., Vol. 13, pp. 245-251, 2008. https://doi.org/10.1016/j.cocis.2008.01.005
  6. M. Antonietti and K. Landfester, Polyreactions in miniemulsions, Prog. Polym. Sci., Vol. 27, No. 4, pp. 689-757, 2002. https://doi.org/10.1016/S0079-6700(01)00051-X
  7. J. M. Asua, Miniemulsion polymerization, Prog. Polym. Sci., Vol. 27, pp. 1283-1346, 2002. https://doi.org/10.1016/S0079-6700(02)00010-2
  8. T. Delmas, H. Piraux, A.C. Couffin, I. Texier, F. Vinet, P. Poulin, M. E. Cates, and J. Bibette, How to prepare and stabilize very small nanoemulsions, Langmuir, Vol. 27, No. 5, pp. 1683-1692, 2011. https://doi.org/10.1021/la104221q
  9. F. Ganachaud and J. L. Katz, Nanoparticles and nanocapsules created using the Ouzo effect: spontaneous emulsification as an alternative to ultrasonic and high-shear devices, Chem Phys Chem., Vol. 6, No. 2, pp. 209-216, 2005. https://doi.org/10.1002/cphc.200400527
  10. A. Forgiarini, J. Esquena, C. Gonzalez, C. Solans, Formation of nano-emulsions by low-energy emulsification methods at constant temperature, Langmuir, Vol. 17, No. 7, pp. 2076-83, 2001. https://doi.org/10.1021/la001362n
  11. W. Liu, D. Sun, C. Li, Q. Liu, and J. Xu, Formation and stability of paraffin oil-in-water nano-emulsions prepared by the emulsion inversion point method, J. Colloid Interf. Sci., Vol. 303, No. 2, pp. 557-563, 2006. https://doi.org/10.1016/j.jcis.2006.07.055
  12. O. Sonneville-Aubrun, D. Babayan, D. Bordeaux, P. Lindner, G. Rata, and B. Cabane, Phase transition pathways for the production of 100 nm oil-in-water emulsions, Phys. Chem. Chem. Phys., Vol. 11, No. 1, pp. 101-110, 2009. https://doi.org/10.1039/B813502A
  13. D. Morales, J. M. Gutierrez, M.J. Garcia-Celma, and C. Solans, A study of the relation between bicontinuous microemulsions and oil/water nanoemulsion formation, Langmuir, Vol. 19, No. 18, pp. 7196-7200, 2003. https://doi.org/10.1021/la0300737
  14. P. Izquierdo, J. Esquena, Th.F. Tadros, C. Dederen, J. Feng, M.J. Garcia-Celma, N. Azemar, and C. Solans, Phase behavior and nano-emulsion formation by the phase inversion temperature method, Langmuir, Vol. 20, No. 16, pp. 6594-8, 2004. https://doi.org/10.1021/la049566h
  15. E. H. Kim and W. G. Cho, Nano-emulsion formed with phospholipid-nonionic surfactant mixtures and its stability, J. Soc. Cosmet. Sci. Kor., Vol. 40, No. 3, pp. 221-226, 2014. https://doi.org/10.15230/SCSK.2014.40.3.221
  16. E. H. Kim and W. G. Cho, Cadelilla wax nanoemulsions prepared by phase inversion composition(PIC) method, J. Kor. Oil Chem. Soc., Vol. 31, No. 2, pp. 203-209, 2014. https://doi.org/10.12925/jkocs.2014.31.2.203
  17. E. H. Kim and W. G. Cho, Nanoemulsions containing vitamin E acetate prepared by PIC(Phase Inversion Composition) methods: Factors affecting droplets sizes, J. Kor. Oil Chem. Soc., Vol. 30, No. 4, pp. 602-611, 2013. https://doi.org/10.12925/jkocs.2013.30.4.602
  18. E. H. Kim and W. G. Cho, Stable liquid paraffin-in-water nanoemulsions prepared by phase inversion composition method, J. Soc. Cosmet. Sci. Kor., Vol. 40, No. 2, pp. 133-139, 2014. https://doi.org/10.15230/SCSK.2014.40.2.133
  19. I. M. Lifshitz and V. V. Slezov, The Kinetics of Precipitation from Supersaturated Solid Solutions, J. Phys. Chem. Solids, Vol. 19, No. 1-2, pp. 35-50, 1961. https://doi.org/10.1016/0022-3697(61)90054-3
  20. T. G. Mason, J. N. Wilking, K. Meleson, C. B. Chang, and S. M. Graves, Nanoemulsions: Formation, structure, and physical properties, J. Phys.: Condens. Matter, Vol. 18, pp. 635-666, 2006. https://doi.org/10.1088/0953-8984/18/41/R01
  21. M. M. Fryd and T. G. Mason, Nanoinclusions in Cryogenically Quenched Nanoemulsions, Annu. Rev. Phys. Chem., Vol. 63, pp. 493-518, 2012. https://doi.org/10.1146/annurev-physchem-032210-103436
  22. P. Taylor, Ostwald ripening in emulsions: estimation of solution thermodynamics of the disperse phase, Adv. Colloid Interface Sci., Vol. 106, No. 1-3, pp. 261-285, 2003. https://doi.org/10.1016/S0001-8686(03)00113-1