과제정보
연구 과제 주관 기관 : 국토해양부, 한국연구재단
참고문헌
- 강주원, 김기철, 수동 TMD의 적용을 통한 아치 구조물의 지진응답 제어, 대한건축학회논문집 구조계, 26(7), 37-44, 2010
- 김승덕, 윤태영, 손수덕, 스텝하중을 받는 얕은 정현형 아치의 연속 응답 스펙트럼에 의한 동적 좌굴 특성 분석, 대한건축학회논문집 구조계, 20(10), 3-10, 2004
- 김연태, 허택녕, 김문겸, 황학주, 비선형 운동해석에 의한 낮은 아치의 동적 임계좌굴하중의 결정, 대한토목학회논문집, 12(2), 43-54, 1992
- 손수덕, 하준홍, 이승재, 다분할 테일러급수 해법을 이용한 비대칭 모드를 갖는 아치구조물의 비선형 동적 응답, 대한건축학회논문집 구조계, 28(11), 39-46, 2012a
- 손수덕, 하준홍, 이승재, 시분할구간 호모토피 섭동법을 이용한 공간 트러스의 비선형 동적 해석, 한국소음진동공학회논문집, 22(9), 879-888, 2012b https://doi.org/10.5050/KSNVE.2012.22.9.879
- 정찬우, 석근영, 강주원, 갤러킨법을 이용한 아치의 고유진동 해석, 한국공간구조학회논문집, 7(4), 55-61, 2007
- Adomian, G. and Rach, R., Generalization of adomian polynomials to functions of several variables, Computers & mathematics with Applications, 24, 11-24, 1992
- Alnasr, M.H. and Erjaee, G.H., Application of the multistage homotopy perturbation method to some dynamical systems, International Journal of Science & Technology A1, 33-38, 2011
- Ario, I., Homoclinic bifurcation and chaos attractor in elastic two-bar truss, International Journal of Non-Linear Mechanics 39(4), 605-617, 2004 https://doi.org/10.1016/S0020-7462(03)00002-7
- Barrio, R., Blesa, F. and Lara, M., VSVO Formulation of the Taylor method for the numerical solution of ODEs, Computers & mathematics with Applications, 50, 93-111, 2005 https://doi.org/10.1016/j.camwa.2005.02.010
- Bi, Q. and Dai, H.H., Analysis of non-linear dynamics and bifurcations of a shallow arch subjected to periodic excitation with internal resonance, Journal of Sound and Vibration, 233(4), 557-571, 2000
- Blair, K.B., Krousgrill, C.M. and Farris, T.N., Non-linear dynamic response of shallow arches to harmonic forcing, Journal of Sound and Vibration, 194(3), 353-367, 1996 https://doi.org/10.1006/jsvi.1996.0363
- Blendez, A. and Hernandez, T., Application of He's homotopy perturbation method to the doffing-harmonic oscillator, International Journal of Nonlinear Science and Numerical Simulation, 8(1), 79-88, 2007 https://doi.org/10.1515/IJNSNS.2007.8.1.79
- Chen, J.S. and Li, Y.T., Effects of elastic foundation on the snap-through buckling of a shallow arch under a moving point load, International Journal of Solids and Structures, 43, 4220-4237, 2006 https://doi.org/10.1016/j.ijsolstr.2005.04.040
- Chowdhury, S.H., A Comparison between the modified homotopy perturbation method and adomain decomposition method for solving nonlinear heat transfer equations, Journal of Applied Sciences, 11(8), 1416-1420, 2011 https://doi.org/10.3923/jas.2011.1416.1420
- Chowdhury, M.S.H. and Hashim, I., Analytical solutions to heat transfer equations by homotopy perturbation method revisited, Physics Letters A, 372, 1240-1243, 2008 https://doi.org/10.1016/j.physleta.2007.09.015
- Chowdhury, M.S.H., Hashim, I. and Abdulaziz, O., Application of homotopy perturbation method to nonlinear population dynamics models, Physics Letters A, 368, 251-258, 2007 https://doi.org/10.1016/j.physleta.2007.04.007
- Chowdhury, M.S.H., Hashim, I. and Momani, S., The multistage homotopy-perturbation method: A powerful scheme for handling the Lorenz system, Chaos Solutions & Fractal, 40, 1929-1937, 2009 https://doi.org/10.1016/j.chaos.2007.09.073
- Compean, F.I., Olvera, D., Campa, F.J., Lopez de Lacalle, L.N., Elias-Zuniga, A. and Rodriguez C.A., Characterization and stability analysis of a multivariable milling tool by the enhanced multistage homotopy perturbation method, International Journal of Machine Tools & Manufacture 57, 27-33, 2012 https://doi.org/10.1016/j.ijmachtools.2012.01.010
- De Rosa, M.A. and Franciosi, C., Exact and approximate dynamic analysis of circular arches using DQM, International Journal of Solids and Structures, 37, 1103-1117, 2000 https://doi.org/10.1016/S0020-7683(98)00275-3
- Ganji, D.D., The application of He's homotopy perturbation method to nonlinear equations arising in heat transfer, Physics Letters A, 355, 337-341, 2006 https://doi.org/10.1016/j.physleta.2006.02.056
- Ha, J., Gutman, S., Shon, S. and Lee S., Stability of shallow arches under constant load, International Journal of Non-Linear Mechanics, 58, 120-127, 2014 https://doi.org/10.1016/j.ijnonlinmec.2013.08.004
- He, J.H., Application of homotopy perturbation method to nonlinear wave equations, Chaos Solitons & Fractals, 26, 695-700, 2005 https://doi.org/10.1016/j.chaos.2005.03.006
- He, J.H., Homotopy perturbation technique, Comput. Methods Appl. Mech. Engrg., 178, 257-262, 1999 https://doi.org/10.1016/S0045-7825(99)00018-3
- He, J.H., The homotopy perturbation method for nonlinear oscillators with discontinuities, Applied Mathematics and Computation, 151, 287-292, 2004 https://doi.org/10.1016/S0096-3003(03)00341-2
- Jianmin, W. and Zhengcai, C., Sub-harminic resonances of nonlinear oscillations with parametric excitation by means of the homotopy analysis method, Physics Letters A, 371, 427-431, 2007 https://doi.org/10.1016/j.physleta.2007.09.057
- Lacarbonara, W. and Rega, G., Resonant nonlinear normal modes-part2: activation/ orthogonality conditions for shallow structural systems, International Journal of Non-linear Mechanics, 38, 873-887, 2003 https://doi.org/10.1016/S0020-7462(02)00034-3
- Liao, S.J., The proposed homotopy analysis technique for the solution of nonlinear problems, PhD Thesis, Shanghai Jiaotong University, 1992
- Lin, J.S. and Chen, J.S., Dynamic snap-through of a laterally loaded arch under prescribed end motion, International Journal of Solids and Structures, 40, 4769-4787, 2003 https://doi.org/10.1016/S0020-7683(03)00181-1
- Lions, J.L. and Magenes, E., Nonhomogeneous Boundary Value Problems and Applications, Springer, 1972.
- Rashidi, M.M., Shooshtari, A. and Anwar Beg, O., Homotopy perturbation study of nonlinear vibration of Von Karman rectangular plates, Computers and Structures 106-107, 46-55, 2012 https://doi.org/10.1016/j.compstruc.2012.04.004
- Sadighi, A., Ganji, D.D. and Ganjavi, B., Travelling wave solutions of the sine-gordon and the coupled sine-gordon equations using the homotopy perturbation method, Scientia Iranica Transaction B: Mechanical Engineering, 16(2), 189-195, 2007
- Sajid, M., Hayat, T. and Asghar, S., Comparison between the HAM and HPM solutions of thin film flows of non-Newtonian fluids on a moving belt, Nonlinear Dynamics 50(1-2), 27-35, 2007 https://doi.org/10.1007/s11071-006-9140-y
- Wang, S. and Yu, Y., Application of Multistage Homotopy-perturbation Method for the Solutions of the Chaotic Fractional Order Systems, International Journal of Nonlinear Science 13(1), 3-14, 2012
- Yu, Y. and Li, H.X., Application of the multistage homotopy-perturbation method to solve a class of hyperchaotic systems, Chaos, Solitons and Fractals 42, 2330-2337, 2009 https://doi.org/10.1016/j.chaos.2009.03.154