DOI QR코드

DOI QR Code

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Streptococcus iniae shows potential as a subunit vaccine against various streptococcal species

  • Kim, Min Sun (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Choi, Seung Hyuk (Department of Aquatic Life Medicine, Pukyong National University) ;
  • Kim, Ki Hong (Department of Aquatic Life Medicine, Pukyong National University)
  • Received : 2014.11.05
  • Accepted : 2015.04.09
  • Published : 2015.04.30

Abstract

The potential of Streptococcus iniae glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as an antigen for a subunit vaccine was investigated using a zebrafish model. The recombinant S. iniae GAPDH was purified using His-tag column chromatography, and antisera against the recombinant GAPDH (rGAPDH) were produced by intraperitoneal immunization of rats. By immunization with S. iniae rGAPDH, the survival rates of zebrafish against an S. iniae challenge increased, suggesting that GAPDH would be an antigen capable of inducing protective immune responses in fish. Furthermore, we demonstrated using Western blotting, that the antisera against rGAPDH of S. iniae had cross-reactivity with GAPDH from Streptococcus parauberis and Lactococcus garviae, which are also culprits of streptococcosis in cultured fish in Korea. These results suggest that S. iniae GAPDH may be used as an antigen for the development of a subunit vaccine against streptococcosis caused by diverse cocci in cultured fish.

Keywords

References

  1. Argiro, L., Kohlstadt, S., Henri, S., Dessein, H., Matabiau, V., Paris, P., Bourgois, A. and Dessein, A.J. : Identification of a candidate vaccine peptide on the 37 kDa Schistosoma mansoni GAPDH. Vaccine, 18: 2039-2048, 2000. https://doi.org/10.1016/S0264-410X(99)00521-6
  2. Bachrach, G., Zlotkin, A., Hurvitz, A., Evans, D.L. and Eldar, A.: Recovery of Streptococcus iniae from diseased fish previously vaccinated with a Streptococcus vaccine. Appl. Environ. Microbiol., 67: 3756-3758, 2001. https://doi.org/10.1128/AEM.67.8.3756-3758.2001
  3. Cho, M.Y., Lee, J.S., Lee, D.C., Choi, H.J. and Kim, J.W.: Immune response of olive flounder, Paralichthys olivaceus against $\beta$-hemolytic Streptococcus iniae formalin-killed cells. J. Fish Pathol., 19: 73-82, 2006a. (In Korean with English Abstract)
  4. Cho, M.Y., Lee, D.C., Lee, J.S., Do, J.W., Kim, M.S., Choi, M.Y., Kim, Y.C., Kang, B.K., Yoon, Y.D. and Kim, J.W.: Stability and efficacy of formalin-killed Streptococcus iniae vaccine for olive flounder, Paralichthys olivaceus. J. Fish Pathol., 19: 165-172, 2006b. (In Korean with English Abstract)
  5. El Ridi, R., Shoemaker, C.B., Farouk, F., El Sherif, N.H. and Afifi, A.: Human T- and B-cell responses to Schistosoma mansoni recombinant glyceraldehyde 3-phosphate dehydrogenase correlate with resistance to reinfection with S. mansoni or Schistosoma haematobium after chemotherapy. Infect. Immun., 69: 237-244, 2001. https://doi.org/10.1128/IAI.69.1.237-244.2001
  6. Eldar, A., Horovitcz, A. and Bercovier, H.: Development and efficacy of a vaccine against Streptococcus iniae infection in farmed rainbow trout. Vet. Immunol. Immunopathol., 56: 175-183, 1997. https://doi.org/10.1016/S0165-2427(96)05738-8
  7. Figge, R.M., Schubert, M., Brinkmann, H. and Cerff, R.: Glyceraldehyde-3-phosphate dehydrogenase gene diversity in eubacteria and eukaryotes: evidence for intra- and inter-kingdom gene transfer. Mol. Biol. Evol., 16: 429-440, 1999. https://doi.org/10.1093/oxfordjournals.molbev.a026125
  8. Gase, K., Gase, A., Schirmer, H. and Malke, H.: Cloning, sequencing and functional overexpression of the Streptococcus equisimilis H46A gapC gene encoding a glyceraldehyde-3-phosphate dehydrogenase that also functions as a plasmin(ogen)-binding protein. Purification and biochemical characterization of the protein. Eur. J. Biochem., 239: 42-51, 1996. https://doi.org/10.1111/j.1432-1033.1996.0042u.x
  9. Goh, S.H., Driedger, D., Gillett, S., Low, D.E., Hemmingsen, S.M., Amos, M., Chan, D., Lovgren, M., Willey, B.M., Shaw, C. and Smith, J.A.: Streptococcus iniae, a human and animal pathogen: Specific identification by the chaperonin 60 gene identification method. J. Clin. Microbiol., 36, 2164-2166, 1998.
  10. Goudot-Crozel, V., Caillol, D., Djabali, M. and Dessein, A.J. : The major parasite surface antigen associated with human resistance to schistosomiasis is a 37 kDa glyceraldehyde-3-phosphate dehydrogenase. J. Exp. Med., 170: 2065-2080, 1989. https://doi.org/10.1084/jem.170.6.2065
  11. Hughes, M.J.G., Moore, J.C., Lane, J.D., Wilson, R., Pribul, P.K., Younes, Z.N., Dobson, R.J., Everest, P., Reason, A.J., Redfern, J.M., Greer, F.M., Paxton, T., Panico, M., Morris, H.R., Feldman, R.G. and Santangelo, J.D.: Identification of major outer surface proteins of Streptococcus agalactiae. Infect. Immun., 70: 1254-1259, 2002. https://doi.org/10.1128/IAI.70.3.1254-1259.2002
  12. Kawai, K., Liu, Y., Onishi, K. and Oshima, S.: A conserved 37 kDa outer membrane protein of Edwardsiella tarda is an effective vaccine candidate. Vaccine, 22: 3411-3418, 2004. https://doi.org/10.1016/j.vaccine.2004.02.026
  13. Klesius, P.H., Shoemaker, C.A. and Evans, J.J.: Efficacy of a killed Streptococcus iniae vaccine in tilapia (Oreochromis niloticus). Bull. Eur. Assoc. Fish Pathol., 19, 39-41, 1999.
  14. Klesius, P.H., Shoemaker, C.A. and Evans, J.J.: Efficacy of single and combined Streptococcus iniae isolate vaccine administered by intraperitoneal and intramuscular routes in tilapia (Oreochromis niloticus). Aquaculture, 188: 237-246, 2000. https://doi.org/10.1016/S0044-8486(00)00345-8
  15. Klesius, P.H., Shoemaker, C.A. and Evans, J.J.: Streptococcus iniae vaccine. U.S. patent No. 6,379,677B1, 2002.
  16. Klesius, P.H., Evans, J.J., Shoemaker, C.A. and Pasnik, D.J.: A vaccination and challenge model using calcein marked fish. Fish Shellfish Immunol., 20: 20-28, 2006. https://doi.org/10.1016/j.fsi.2005.03.003
  17. Koh, T.H., Kurup, A. and Chen, J.: Streptococcus iniae discitis in Singapore. Emerg. Infect. Dis., 10: 1694-1696, 2004. https://doi.org/10.3201/eid1009.040029
  18. Kolberg, J. and Sletten, K.: Monoclonal antibodies that recognize a common pneumococcal protein with similarities to streptococcal group A surface glyceraldehyde- 3-phosphate dehydrogenase. Infect. Immun., 64: 3544-3547, 1996.
  19. Lau, S.K.P., Woo, P.C.Y., Tse, H., Leung, K.W. and Yuen, K.Y.: Invasive Streptococcus iniae infections outside North America. J. Clin. Microbiol., 41: 1004-1009, 2003. https://doi.org/10.1128/JCM.41.3.1004-1009.2003
  20. Lau, S.K.P., Woo, P.C.Y., Luk, W.K., Fung, A.M.Y., Hui, W.T., Fong, A.H.C., Chow, C.W., Wong, S.S. Y. and Yuen, K.Y.: Clinical isolates of Streptococcus iniae from Asia are more mucoid and $\beta$-hemolytic than those from North America. Diagn. Microbiol. Infect. Dis., 54: 177-181, 2006. https://doi.org/10.1016/j.diagmicrobio.2005.09.012
  21. Ling, E., Feldman, G., Portnoi, M., Dagan, R., Overweg, K., Mulholland, F., Chalifa-Caspi, V., Wells, J. and Mizrachi-Nebenzahl, Y.: Glycolytic enzymes associated with the cell surface of Streptococcus pneumoniae are antigenic in humans and elicit protective immune responses in the mouse. Clin. Exp. Immunol., 138: 290-298, 2004. https://doi.org/10.1111/j.1365-2249.2004.02628.x
  22. Liu, Y., Oshima, S., Kurohara, K., Ohnishi, K. and Kawai, K.: Vaccine efficacy of recombinant GAPDH of Edwardsiella tarda against edwardsiellosis. Microbiol. Immunol., 49: 605-612, 2005. https://doi.org/10.1111/j.1348-0421.2005.tb03652.x
  23. Lottenberg, R., Broder, C.C., Boyle, M.D.P., Kain, S.J., Schroeder, B.L. and Curtiss, R. III.: Cloning, sequence analysis and expression in Escherichia coli of a streptococcal plasmin receptor. J. Bacteriol., 174: 5204-5210, 1992. https://doi.org/10.1128/jb.174.16.5204-5210.1992
  24. Miller, J.D. and Neely, M.N.: Zebrafish as a model host for streptococcal pathogenesis. Acta. Trop., 91: 53-68, 2004. https://doi.org/10.1016/j.actatropica.2003.10.020
  25. Modun, B. and Williams, P.: The staphylococcal transferrin- binding protein is a cell wall glyceraldehyde- 3-phosphate dehydrogenase. Infect. Immun., 67: 1086-1092, 1999.
  26. Neely, M., Pfeifer, J. and Caparon, M.G.: Streptococcus- zebrafish model of bacterial pathogenesis. Infect. Immun., 70: 3904-3914, 2002. https://doi.org/10.1128/IAI.70.7.3904-3914.2002
  27. Okwumabua, O. and Chinnapapakkagari, S.: Identification of the gene encoding a 38-kilodalton immunogenic and protective antigen of Streptococcus suis. Clin. Diagn. Lab. Immunol., 12: 484-490, 2005.
  28. Pancholi, V. and Fischetti, V.A.: A major surface protein on group A streptococci is a glyceraldehyde-3-phosphate dehydrogenase with multiple binding activity. J. Exp. Med., 176: 415-426, 1992. https://doi.org/10.1084/jem.176.2.415
  29. Pancholi, V. and Fischetti, V.A.: Glyceraldehyde-3- phosphate dehydrogenase on the surface of group A streptococci is also an ADP-ribosylating enzyme. Proc. Natl. Acad. Sci. USA, 90: 8154-8158, 1993. https://doi.org/10.1073/pnas.90.17.8154
  30. Shin, G.W., Palaksha, K.J., Kim, Y.R., Nho, S.W., Kim, S., Heo, G.J., Park, S.C. and Jung, T.S.: Application of immunoproteomics in developing a Streptococcus iniae vaccine for olive flounder (Paralichthys olivaceus). J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 84: 315-322, 2007.
  31. Weinstein, M.R., Litt, M., Kertesz, D.A., Wyper, P., Rose, D., Coulter, M., McGeer, A., Facklam, R., Ostach, C., Willey, B.M., Borczyk, A. and Low, D. E.: Invasive infections due to a fish pathogen, Streptococcus iniae. S. iniae Study Group. N. Engl. J. Med., 337: 589-594, 1997. https://doi.org/10.1056/NEJM199708283370902

Cited by

  1. Identification of immunogenic proteins and evaluation of recombinant PDHA1 and GAPDH as potential vaccine candidates against Streptococcus iniae infection in flounder ( Paralichthys olivaceus ) vol.13, pp.5, 2015, https://doi.org/10.1371/journal.pone.0195450
  2. Significance of Glutamate Racemase for the Viability and Cell Wall Integrity of Streptococcus iniae vol.85, pp.2, 2015, https://doi.org/10.1134/s0006297920020121