DOI QR코드

DOI QR Code

Characteristic Analysis of Double sided Slotless Halbach Array Permanent Magnet Linear Generator with Three Phases Concentrated Winding of Cored Type by using Analytical Method

해석적 방법을 이용한 3상 집중권 권선을 갖는 양측식 슬롯리스 고정자 Halbach 배열 영구자석 선형 발전기의 특성해석

  • Seo, Sung-Won (Department of Electrical Engineering, Chungnam National University) ;
  • Choi, Jang-Young (Department of Electrical Engineering, Chungnam National University) ;
  • Hong, Keyyong (Offshore Plant Research Division, Korea Research Institute of Ships & Ocean Engineering) ;
  • Kim, Kyong-Hwan (Offshore Plant Research Division, Korea Research Institute of Ships & Ocean Engineering)
  • Received : 2015.03.02
  • Accepted : 2015.04.09
  • Published : 2015.04.30

Abstract

This paper deals with the generating characteristic analysis of permanent magnet linear generator (PMLG) with double-sided Halbach magnet array mover and three phases concentrated stator windings by using analytical method. On the basis of a magnetic vector potential and Maxwell's equations, governing equations are obtained, and magnetization modeling for Halbach magnet array is performed analytically by using the Fourier series. And then, we obtain electrical parameters such as back-EMF constant, resistance, and coil inductance based on magnetic field calculations. Finally, analytical results for generating performance are confirmed by comparing with finite element analysis results.

본 논문은 양측식 슬롯리스 고정자 할박 배열 영구자석 선형 발전기의 발전특성해석을 하였다. 자기 벡터자위와 맥스웰 방정식 이용하여 지배방정식을 도출하고, 특히 영구자석 자화와 고정자 권선의 전류밀도 분포는 무한 푸리에 급수을 이용하여 모델링 하였다. 도출된 지배방정식으로부터, 영구자석 및 고정자 권선에 의한 자계 특성식과 역기전력, 저항, 인덕턴스와 같은 회로정수를 도출 하였다. 발전 특성 해석 결과는 유한요소 해석법과 비교하여 매우 잘 부합함을 확인함으로 그 타당성이 검증되었다.

Keywords

References

  1. G. R. Slemon, IEEE Trans. Ind. Appl. 30, 134 (1994). https://doi.org/10.1109/28.273631
  2. K. Halbach, Nuclear instruments and Methods 169, 1 (1980). https://doi.org/10.1016/0029-554X(80)90094-4
  3. David L.Trumper, IEEE Trans. Ind. Appl. 32, 371 (1996). https://doi.org/10.1109/28.491486
  4. Y. Amara, J. B. Wang, and D. Howe, IEEE Trans. Energy Conv. 20, 761 (2005). https://doi.org/10.1109/TEC.2005.853732
  5. Z. Q. Zhu and D. Howe, IEE Proc. Electr. Power Appl. 148, 299 ( 2001). https://doi.org/10.1049/ip-epa:20010479
  6. Boldea and S. A. Nasar, IEEE Trans. Energy Conv. 14, 712 (1999). https://doi.org/10.1109/60.790940
  7. M. Inoue and K. Sato, IEEE Trans. Magn. 36, 1890 (2000). https://doi.org/10.1109/20.877814
  8. M. A. Mueller, IEE Proc. Elect. Eng. Gen. Trans. Distrib. 149, 446 (2002). https://doi.org/10.1049/ip-gtd:20020394
  9. J. Wang, W. Wang, G. W. Jewell, and D. Howe, IEEE Trans. Ind. Electr. 49, 640 (2002). https://doi.org/10.1109/TIE.2002.1005391
  10. W. R. Cawthorne, P. Famouri, J. Chen, N. N. Clarke, T. I. McDaniel, R. J. Atkinson, S. Nandkumar, C. M. Atkinson, and S. Petreanu, IEEE Trans. Veh. Technol. 48, 1797 (1999). https://doi.org/10.1109/25.806772
  11. M. Leijon, H. Bernhoff, O. Agren, J. Isberg, J. Sundberg, M. Berg, K. Karlsson, and A. Wolfbrandt, IEEE Trans. Energy Conv. 20, 219 (2005). https://doi.org/10.1109/TEC.2004.827709
  12. J. Wang, G. W. Jewell, and D. Howe, IEEE Trans. Magn. 35, 1986 (1999). https://doi.org/10.1109/20.764898
  13. S.-M. Jang, J.-Y. Choi, and S.-S. Jeong, J. Appl. Phys. 99, 08R307 (2006). https://doi.org/10.1063/1.2165606
  14. Z. Q. Zhu and D. Howe, Magnetics, IEEE Trans. Magn. 29, 152 (1993). https://doi.org/10.1109/20.195560