DOI QR코드

DOI QR Code

The Effect of pH on Synthesis of Nano-Silica Using Water Glass

물유리를 이용한 나노실리카 제조 시 pH가 미치는 영향

  • Choi, Jin Seok (Department of Advanced Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • An, Sung Jin (Department of Advanced Materials Science and Engineering, Kumoh National Institute of Technology)
  • 최진석 (금오공과대학교 신소재공학과) ;
  • 안성진 (금오공과대학교 신소재공학과)
  • Received : 2015.03.20
  • Accepted : 2015.04.16
  • Published : 2015.04.27

Abstract

Synthesis of nano-silica using water glass in a Sol-Gel process is one of several methods to manufacture nano-silica. In nano-silica synthesized from water glass, there are various metal impurities. However, synthesis of nano-silica using water glass in a Sol-Gel process is an interesting method because it is relatively simple and cheap. In this study, nano-silica was synthesized from water glass; we investigated the effect of pH on the synthesis of nano-silica. The morphology of the nanosilica with pH 2 was flat, but the surface of the nano-silica with pH 10 had holes similar to small craters. As a result of ICP-OES analysis, the amount of Na in the nano-silica with pH 2 was found to be 170 mg/kg. On the other hand, the amount of Na in the nano-silica with pH 10 was found to be 56,930 mg/kg. After calcination, the crystal structure of the nano-silica with pH 2 was amorphous. The crystal structure of the nano-silica with pH 10 transformed from amorphous to tridymite. This is because elemental Na in the nano-silica had the effect of decreasing the phase transformation temperature.

Keywords

References

  1. T. Matsuzawa, K. Mase, and S. Inoue, J. Appl. Polymer Sci., 112(6), 3748 (2009). https://doi.org/10.1002/app.29770
  2. S. W. UI, I. S. Choi, and S. C. Choi, ISRN Mater. Sci., 2014(1), 6 (2014).
  3. I. I. Slowing, B. G. Trewyn, S. Giri, and V. S. Y. Lin, Adv. Funct. Mater., 17(8), 1225 (2007). https://doi.org/10.1002/adfm.200601191
  4. J. H. Clark, D. J. Macquarrie, and K. Wilson, Stud. Surf. Sci. Catal., 129(36), 251 (2000). https://doi.org/10.1016/S0167-2991(00)80221-9
  5. P. W. J. G. Wijnen, T. P. M. Beelen, K. P. J. Rummens, H. C. P. L. Saeijs, and R. A. van Santen, J. Appl. Cryst., 24(5), 759 (1991). https://doi.org/10.1107/S0021889891000924
  6. L. G. A. van de Water, and T. Maschmeyer, Top. Catal., 29(1-2), 67 (2004). https://doi.org/10.1023/B:TOCA.0000024929.79470.7f
  7. E. Y. Choi, Y. B. Lee, D. W. Shin, and K. H. Kim, Kor. J. Mater. Res. (in Korean), 12(11), 850 (2002). https://doi.org/10.3740/MRSK.2002.12.11.850
  8. C. Yamagata, D. R. Elias, M. R. S. Paiva, M. Misso, and S. R. H. M. Castanho, J. Mater. Sci. Eng. B, 2(8), 429 (2012).
  9. C. J. Brinker and G. W. Scherer, Sol-Gel science: the physics and chemistry of sol-gel processing, p.103, Academic press, San Diego, CA (1990).
  10. J. S. Choi, H. K. Lee, and S. J. An, Kor. J. Mater. Res. (in Korean), 24(5), 271 (2014). https://doi.org/10.3740/MRSK.2014.24.5.271
  11. J. L. Gurav, I. -K. Jung, H. -H. Park, E. S. Kang, and D. Y. Nadargi, J. Nanomate., 2010(1), 11 (2010).
  12. A. Palermo, J. P. H. Vazquez, A. F. Lee, M. S. Tikhov, and R. M. Lambert, J. Catal., 177(2), 259 (1998). https://doi.org/10.1006/jcat.1998.2109

Cited by

  1. Synthesis of high purity silica from low cost water glass via sol–gel process and soxhlet extraction vol.82, pp.3, 2017, https://doi.org/10.1007/s10971-017-4366-3