DOI QR코드

DOI QR Code

광음향 및 네펠로미터 방식을 이용한 에어로졸 흡수 및 산란계수 측정

Aerosol Light Absorption and Scattering Coefficient Measurements with a Photoacoustic and Nephelometric Spectrometer

  • 김지형 (서울대학교 지구환경과학부) ;
  • 김상우 (서울대학교 지구환경과학부) ;
  • 허정화 (서울대학교 지구환경과학부) ;
  • 남지현 (서울대학교 지구환경과학부) ;
  • 김만해 (서울대학교 지구환경과학부) ;
  • 유영석 (기상청 기후변화감시센터) ;
  • 임한철 (기상청 기후변화감시센터) ;
  • 이철규 (기상청 기후변화감시센터) ;
  • 허복행 (기상청 기후변화감시센터) ;
  • 윤순창 (서울대학교 지구환경과학부)
  • Kim, Ji-Hyoung (School of Earth and Environmental Sciences, Seoul National University) ;
  • Kim, Sang-Woo (School of Earth and Environmental Sciences, Seoul National University) ;
  • Heo, Junghwa (School of Earth and Environmental Sciences, Seoul National University) ;
  • Nam, Jihyun (School of Earth and Environmental Sciences, Seoul National University) ;
  • Kim, Man-Hae (School of Earth and Environmental Sciences, Seoul National University) ;
  • Yu, Yung-Suk (Korea Global Atmosphere Watch Center, Korea Meteorological Administration) ;
  • Lim, Han-Chul (Korea Global Atmosphere Watch Center, Korea Meteorological Administration) ;
  • Lee, Chulkyu (Korea Global Atmosphere Watch Center, Korea Meteorological Administration) ;
  • Heo, Bok-Haeng (Korea Global Atmosphere Watch Center, Korea Meteorological Administration) ;
  • Yoon, Soon-Chang (School of Earth and Environmental Sciences, Seoul National University)
  • 투고 : 2014.12.23
  • 심사 : 2015.02.08
  • 발행 : 2015.03.31

초록

고산기후관측소에서 2008년 8월과 9월의 Cheju ABC Plume Monsoon Experiment (CAPMEX) 기간 동안 3파장 photoacoustic soot spectrometer (PASS)로 측정된 에어로졸 흡수계수(${\sigma}_a$)와 에어로졸 산란계수(${\sigma}_s$)를 기존의 연구에서 널리 사용되고 있는 aethalometer 및 nephelometer의 동시관측 결과와 비교하였다. PASS ${\sigma}_a$의 관측결과는 aethalometer ${\sigma}_a$와 시간 변화 경향성이 매우 잘 일치했으나, 532 nm의 경우 절대값 면에서 PASS ${\sigma}_a$가 약 53% 큰 값을 보여 다소 차이가 있음을 알 수 있었다. PASS ${\sigma}_s$의 관측결과는 nephelometer ${\sigma}_s$와 비교했을 때, 근소한 차이로 매우 잘 일치함을 확인하였다(Bias Difference: $13.6Mm^{-1}$). 대기 중의 상대습도(RH)가 증가함에 따라 ${\sigma}_a$보다는 ${\sigma}_s$에 대한 영향이 큰 것으로 사료된다. Nephelometer ${\sigma}_s$와 PASS ${\sigma}_s$의 비율은 상대습도가 증가할수록 명확히 증가하는 경향성을 보였다. 이는 RH가 증가함에 따라서 PASS의 ${\sigma}_s$가 nephelometer ${\sigma}_s$에 비해서 상대적으로 감소하였음을 의미하며, 이러한 경향성은 RH가 70~80%를 넘어서면서 차이가 더욱 두드러지게 나타났다. Nephelometer와 aethalometer의 ${\sigma}_a$${\sigma}_s$ 관측 결과 보다 PASS의 측정 결과로부터 산출한 $A{\AA}E$$S{\AA}E$가 더 크게 나타났다.

Ambient measurements of aerosol light absorption (${\sigma}_a$) and scattering coefficients (${\sigma}_s$) were done at Gosan climate observatory during summer 2008 using a 3-wavelength photoacoustic soot spectrometer (PASS). PASS was deployed photoacoustic method for light absorption and integrated nephelometry for light scattering measurements. The ${\sigma}_a$ and ${\sigma}_s$ from PASS were compared with those from co-located aethalometer and nephelometer measurements. The aethalometer measurements of ${\sigma}_a$ correlated reasonably well with photoacoustic measurements, but the slope of the linear fitting line indicated the PASS measurement values of ${\sigma}_a$ were larger by a factor of 1.53. The nephelometer measurement values of ${\sigma}_s$ correlated very well with PASS measurements of ${\sigma}_s$, with a slope of 1.12 and a small offset. Comparing to the aethalometer measurements, the photoacoustic measurements of ${\sigma}_a$ didn't exhibit a significant (i.e., the ratio between aethalometer and PASS increased) change with increasing relative humidity (RH). The ratio of ${\sigma}_s$ between nephelometer and PASS increased with increasing RH, especially when the RH increased beyond 80%. This apparent increase in ${\sigma}_s$ with RH may be due to the contribution of hygroscopic growth of aerosols.

키워드

참고문헌

  1. Ajtai, T., A. Filep, N. Utry, M. Schnaiter, C. Linke, Z. Bozoki, G. Szabo, and T., Leisner, 2011: Inter-comparison of optical absorption coefficients of atmospheric aerosols determined by a multi-wavelength photoacoustic spectrometer and an aethalometer under sub-urban wintry conditions. J. Aerosol Sci., 42, 859-866, doi:10.1016/j.jaerosci.2011.07.008.
  2. Anderson, T. L., and Coauthors, 1996: Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer. J. Atmos. Oceanic Technol., 13, 967-986. https://doi.org/10.1175/1520-0426(1996)013<0967:PCOAHS>2.0.CO;2
  3. Anderson, T. L., and J. A. Ogren, 1998: Determining aerosol radiative properties using the TSI 3563 integrating Nephelometer. Aerosol Sci. Technol., 29, 57-69.
  4. Andreae, M. O., and A. Gelencser, 2006: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys., 6, 3131-3148, doi:10.5194/acp-6-3131-2006.
  5. Arnott, W. P., H. Moosmuller, C. F. Rogers, T. Jin, and R. Bruch, 1999: Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description. Atmos. Environ., 33, 2845-2852. https://doi.org/10.1016/S1352-2310(98)00361-6
  6. Arnott, W. P., K. Hamasha, H. Moosmuller, P. J. Sheridan, and J. A. Ogren, 2005: Towards aerosol light-absorption measurements with a 7-wavelength aethalometer: Evaluation with a photoacoustic instrument and 3- wavelength nephelometer. Aerosol Sci. Technol., 39, 17-29, doi:10.1080/027868290901972.
  7. Bond, T. C., T. L. Anderson, and D. Campbell, 1999: Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols. Aerosol Sci. Technol., 30, 582-600, doi:10.1080/027868299304435.
  8. Coen, M. C., and Coauthors, 2010: Minimizing light absorption measurement artifacts of the Aethalometer: evaluation of five correction algorithms. Atmos. Meas. Tech., 3, 457-474. https://doi.org/10.5194/amt-3-457-2010
  9. Cross, E. S., and Coauthors, 2010: Soot prticle studies - instrument inter-comparison - project overview. Aerosol Sci. Technol., 44, 592-611. https://doi.org/10.1080/02786826.2010.482113
  10. Hansen, A. D. A., H. Rosen, and T. Novakov, 1984: The aethalometer - an instrument for the real-time measurement of optical absorption by aerosol particles. Sci. Total Environ., 36, 191-196. https://doi.org/10.1016/0048-9697(84)90265-1
  11. Haywood, J. M., and K. P. Shine, 1995: The effect of anthropogenic sulfate and soot aerosol on the clear sky planetary radiation budget. Geophy. Res. Lett., 22, 603-606. https://doi.org/10.1029/95GL00075
  12. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp, doi:10.1017/CBO9781107415324.
  13. Kirchstetter, T. W., and T. Novakov, 2004: Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J. Geophys. Res., 109, D21208, doi:10.1029/2004JD004999.
  14. Lack, D. A., E. R. Lovejoy, T. Baynard, A. Pettersson, and A. R. Ravishankara, 2006: Aerosol absorption measurement using photoacoustic spectroscopy: sensitivity, calibration, and uncertainty developments. Aerosol Sci. Technol., 40, 697-708, doi:10.1080/02786820600803917.
  15. Lewis, K., W. P. Arnott, H. Moosmuller, and C. E. Wold, 2008: Strong spectral variation of biomass smoke light absorption and single scattering albedo observed with a novel dual-wavelength photoacoustic instrument. J. Geophys. Res., 113, D16203, doi:10.1029/2007JD009699.
  16. Petzold, A., and Coauthors, 2013: Recommendations for reporting "black carbon" measurements. Atmos. Chem. Phys., 13, 8365-8379, doi:10.5194/acp-13-8365-2013.
  17. Russell, P. B., and Coauthors, 2002: Comparison of aerosol single scattering albedos derived by diverse techniques in two North Atlantic experiments. J. Atmos. Sci., 59, 609-619, doi: http://dx.doi.org/10.1175/1520-0469(2002)059<0609:COASSA>2.0.CO;2.
  18. Schmid, O., P. Artaxo, W. P. Arnott, D. Chand, L. V. Gatti, G. P. Frank, A. Hoffer, M. Schnaiter, and M. O. Andreae, 2006: Spectral light absorption by ambient aerosols influenced by biomass burning in the Amazon Basin. I: Comparison and field calibration of absorption measurement techniques. Atmos. Chem. Phys., 6, 3443-3462. https://doi.org/10.5194/acp-6-3443-2006
  19. Slowik, J. G., and Coauthors, 2007: An inter-comparison of instruments measuring black carbon content of soot particles. Aerosol Sci. Technol., 41, 295-314. https://doi.org/10.1080/02786820701197078
  20. Stephens, M., N. Turner, and J. Sandberg, 2003: Particle identification by laser-induced incandescence in a solid-state laser cavity. Appl. Opt., 42, 3726-3736. https://doi.org/10.1364/AO.42.003726
  21. Weingartner E., H. Saathoff, M. Schnaiter, N. Streit, B. Bitnar, and U. Baltensperger, 2003: Absorption of light by soot particles: determination of the absorption coefficient by means of aethalometers. J. Aerosol Sci., 34, 1445-1463. https://doi.org/10.1016/S0021-8502(03)00359-8