DOI QR코드

DOI QR Code

HadGEM-CC 모델의 RCP 시나리오에 따른 전지구 탄소수지 변화 전망

Global Carbon Budget Changes under RCP Scenarios in HadGEM2-CC

  • Heo, Tae-Kyung (National Institute of Meteorological Research) ;
  • Boo, Kyung-On (National Institute of Meteorological Research) ;
  • Shim, Sungbo (National Institute of Meteorological Research) ;
  • Hong, Jinkyu (Ecosystem-Atmosphere Process Lab, Department of Atmospheric Sciences, Yonsei University) ;
  • Hong, Je-Woo (Ecosystem-Atmosphere Process Lab, Department of Atmospheric Sciences, Yonsei University)
  • 투고 : 2014.11.18
  • 심사 : 2015.02.25
  • 발행 : 2015.03.31

초록

This study is to investigate future changes in carbon cycle using the HadGEM2-Carbon Cycle simulations driven by $CO_2$ emissions. For experiment, global carbon budget is integrated from the two (8.5/2.6) representative concentration pathways (RCPs) for the period of 1860~2100 by Hadley Centre Global Environmental Model, version 2, Carbon Cycle (Had-GEM2-CC). From 1985 to 2005, total cumulative $CO_2$ amount of anthropogenic emission prescribed as 156 GtC. The amount matches to the observed estimates (CDIAC) over the same period (136 GtC). As $CO_2$ emissions into the atmosphere increase, the similar increasing tendency is found in the simulated atmospheric $CO_2$ concentration and temperature. Atmospheric $CO_2$ concentration in the simulation is projected to be 430 ppm for RCP 2.6 at the end of the twenty-first century and as high as 931 ppm for RCP 8.5. Simulated global mean temperature is expected to rise by $1.6^{\circ}C$ and $3.5^{\circ}C$ for RCP 2.6 and 8.5, respectively. Land and ocean carbon uptakes also increase in proportion to the $CO_2$ emissions of RCPs. The fractions of the amount of $CO_2$ stored in atmosphere, land, and ocean are different in RCP 8.5 and 2.6. Further study is needed for reducing the simulation uncertainty based on multiple model simulations.

키워드

참고문헌

  1. Anav, A., P. Friedlingstein, and M. Kidston, 2013: Evaluating the land and ocean conponents of the Global carbon cycle in the CMIP5 earth system models. J. Climate, 26, 6801-6844. https://doi.org/10.1175/JCLI-D-12-00417.1
  2. Andres, R. J., J. S. Gregg, L. Losey, G. Marland, and T. A. Boden, 2011: Monthly, global emissions of carbon dioxide from fossil fuel consumption. Tellus B, 63, 309-327. https://doi.org/10.1111/j.1600-0889.2011.00530.x
  3. Bennington, V., G. A. McKinley, and S. Dutkiewicz, 2009: What does chlorophyll variability tell us about export and air-sea $CO_{2}$ flux variability in the North Atlantic?, Global Biogeochemical Cycles, 23, 11.
  4. Boden, T. A., G. Marland, and R. J. Andres, 2010: Global, Regional, and National Fossil-Fuel $CO_{2}$ Emissions, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tenn., USA, doi:10.3334/CDIAC/00001V2010.
  5. Boer and Arora, 2013: Feedbacks in Emission-Driven and Concentration-Driven Global Carbon Budgets, J. Climate, 26, 3326-3341. https://doi.org/10.1175/JCLI-D-12-00365.1
  6. Caesar, J., E. Palin, and S. Liddicoat, 2013: Response of the HadGEM2 earth system model to future greenhouse gas emissions pathways to the year 2300. J. Climate, 26, 3275-3285. https://doi.org/10.1175/JCLI-D-12-00577.1
  7. Collins, W. J., and Coauthors, 2011: Development and evaluation of an Earth-system model-HadGEM2. Geosci. Model Dev., 4, 1051-1075. https://doi.org/10.5194/gmd-4-1051-2011
  8. Cox, P. M., 2001: Description of the TRIFFID dynamic global vegetation model. Hadley Centre Tech. Note, 24, 17.
  9. Clarke, L., 2007: Scenarios of Greenhouse Gas Emissions and Atmospheric Concentrations (Sub-report 2.1A of Synthesis and Assessment Product 2.1, US Climate Change Science Program and the Subcommittee on Global Change Research, Department of Energy, Office of Biological & Environmental Research, Washington DC, 2007).
  10. Dezi, S., B. E. Medlyn, and G. Tonon, 2010: The effect of nitrogen deposition on forest carbon sequestration: a model-based analysis. Glob. Change Biol., 16, 1470-1486. https://doi.org/10.1111/j.1365-2486.2009.02102.x
  11. Doney, S. C., V. J. Fabry, and R. A. Feely, 2009: Ocean Acidification: The Other $CO_{2}$ Problem, Annu. Rev. Marine. Science, 1, 169-192. https://doi.org/10.1146/annurev.marine.010908.163834
  12. Doney, S. C., L. Bopp, and M. C. Long, 2014: Historical and future trends in ocean climate and biogeochemistry. Oceangraphy, 27, 108-119. https://doi.org/10.5670/oceanog.2014.14
  13. Dixon, R. K., A. M. Solomon, and S. Brown, 1994: Carbon pools and flux of global forest ecosystems. Science, 263, 185-190. https://doi.org/10.1126/science.263.5144.185
  14. Enting, I. G., T. M. L. Wigley, and M. Heimann, 2001: Future emissions and concentrations of carbon dioxide: Key Ocean/Atmosphere/Land analyses. CRISIRO, 31, 133 pp.
  15. Feely, R. A., S. C. Doney, and S. R. Cooley, 2009: Ocean acidification. Oceangraphy, 22, 36-47. https://doi.org/10.5670/oceanog.2009.95
  16. Friedlingstein, P., 2006: Climate-carbon cycle feedback analysis: Results from the CMIP4 model intercomparison. J. Climate, 19, 3337-3353. https://doi.org/10.1175/JCLI3800.1
  17. Feely, R. A., J. L. Dufresne, and P. M. Cox, 2003: How positive is the feedback between climate change and the carbon cycle?, Tellus, 55B, 692-700.
  18. Friedlingstein, P., M. Meinshausen, and V. K. Arora, 2014: Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. American Meteorological Society, 26, 511-526.
  19. Gim, B. M., T. S. Choi, and J. S. Lee, 2014: Effect assessment and derivation of ecological effect guideline on $CO_{2}$ - induced acidification for marine organisms. Journal of the Korean Society for Marine Environment and Energy, 17, 153-165. https://doi.org/10.7846/JKOSMEE.2014.17.2.153
  20. Goldewijk, K. 2001: estimating global land use change over the past 300 years: the HYDE database. Global Biogeochemstry, 15, 417-433. https://doi.org/10.1029/1999GB001232
  21. Hijioka, Y., Y. Matsuoka, and H. Nishimoto, 2008: Global GHG emissions scenarios under GHG concentration stabilization targets. J. Glob. Environ. Eng., 13, 97-108.
  22. Houghton, R. A. 2008: Carbon Flux to the Atmosphere from Land-Use Changes: 1850-2005, in: TRENDS: A Compendium of Data on Global Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tenn., USA, 2008.
  23. IPCC, 2007: Climate Change 2007, The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment, Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  24. IPCC, 2013: Climate Change 2013, The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment, Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  25. Ito, A., 2008. The regional carbon budget of East Asia simulated with a terrestrial ecosystem model and validated using Asia Flux data. Agricultural and Forest Meteorology, 148, 738-747. https://doi.org/10.1016/j.agrformet.2007.12.007
  26. Ito, A., 2010. Changing ecophysiological processes and carbon budget in East Asian ecosystems under nearfuture changes in climate: implications for long-term monitoring from a process-based model. Journal of Plant Research, 123, 577-588. https://doi.org/10.1007/s10265-009-0305-x
  27. Jang, J. H., J. K. Hong, and Y. H. Ryun, 2010: A Sensitivity Analysis of JULES Land Surface Model for Two Major Ecosystems in Korea: Influence of Biophysical Parameters on the Simulation of Gross Primary Productivity and Ecosystem Respiration. Korea J. Agric. Forest Meteor., 12, 107-121. https://doi.org/10.5532/KJAFM.2010.12.2.107
  28. Jung, M., M. Reichstein, and P. Ciais, 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951-964. https://doi.org/10.1038/nature09396
  29. Jones, C. D., 2004: Climate-Land Carbon Cycle Simulation of the 20th century: Assessment of HadCM3LC C4MIP Phase 1 experiment. Hadley centre technical note 59.
  30. Jones, C. D., J. K. Hughes, and N. Bellouin, 2011: The Had- GEM2-ES implementation of CMIP5 centennial simulations. Geosci. Model Dev., 4, 543-570. https://doi.org/10.5194/gmd-4-543-2011
  31. Jones, C. D., E. Robertson, and V. Arora, 2013: Twenty-firstcentury compatible $CO_{2}$ emissions and airborne fraction simulated by CMIP5 earth system models under four representative concentration pathways. J. Climate, 26, 4398-4413. https://doi.org/10.1175/JCLI-D-12-00554.1
  32. Keeling, C. D., 2001: S.I.O. Exchanges of Atmospheric $CO_{2}$ and 13$CO_{2}$ with the Terrestrial Biosphere and Oceans from 1978 to 2000.I. Global Aspects Reference Series No. 00-21 (Scripps Institution of Oceangraphy, University of California, San Diego, 2001).
  33. Keeling, C. D., T. P. Whorf, M. Wahlen, and J. Plichtt, 1995: Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature, 375, 666-670. https://doi.org/10.1038/375666a0
  34. Keeling, C. D., R. B. Bacastow, and A. E. Bainbridge, 1976: Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii. Tellus, 28, 538-551. https://doi.org/10.1111/j.2153-3490.1976.tb00701.x
  35. Kim, H. T., B. E.Moon, and E. G. Choi, 2014: An analysis of local quantity of carbon absorption, fixation and emission by using GIS. J. of KORRA, 22, 40-48.
  36. Kim, J. W., H. M. Kim, and C. H. Cho, 2012 : Application of carbon tracking system based on ensemble kalman filter on the diagnosis of carbon cycle in asia atmosphere. Korean Meteorological Society, 22, 415-427.
  37. Lee, C., K. O. Boo, and J. K. Hong, 2014:Future changes in global terrestrial carbon cycle under RCP scenarios, Atmosphere., 24, 303-315 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2014.24.3.303
  38. Lee, N. Y., 2010 : Carbon cycle in terrestrial ecosystems - Net Ecosystem Production (NEP) in a forest. Journal of National Park Research, 1, 163-168.
  39. Lee, J. Y., D. K. Kim, and H. Y. Won, 2013: Organic Carbon Distribution and Budget in the Pinus densiflora Forest at Mt. Worak National Park. Korean J. Environ. EcoL, 27, 561-570. https://doi.org/10.13047/KJEE.2013.27.5.561
  40. Lee, J. H., J. S.Yi, and Y. M. Chun, 2013: Discussion of soil respiration for understanding ecosystem carbon cycle in Korea, KJEE, 46, 310-318. https://doi.org/10.11614/KSL.2013.46.2.310
  41. Le Quere, C., R. J. Andres, and T. Boden, 2013: The global carbon budget 1959-2011. Earth Syst. Sci. Data, 5, 165-185. https://doi.org/10.5194/essd-5-165-2013
  42. Le Quere, C., G. P. Peters, and R. J. Andres, 2014: Global carbon budget 2013. Earth Syst. Sci. Data, 6, 235-263. https://doi.org/10.5194/essd-6-235-2014
  43. Liddicoat, S., C. Jones, and E. Robertson, 2013: $CO_{2}$ emissions determined by HadGEM2-ES to be compatible with the representative concentration pathway scenarios and their extensions. J. Climate, 26, 4381-4397. https://doi.org/10.1175/JCLI-D-12-00569.1
  44. Lim, J. H., J. H. Shin, and G. T. Kim, 2003: KoFlux 2002 Synthesis; Forest stand structure, site characteristics and carbon budget of the Kwangneung Natural Forest in Korea. Korean Journal of Agricultural and Forest Meteorology, 5, 101-109.
  45. Martin, G. M., N. Bellouin, and W. J. Collins, 2011: The HadGEM2 family of met office unified model climate configurations. Geosci. Model Dev., 4, 723-757. https://doi.org/10.5194/gmd-4-723-2011
  46. Moss, R. H., J. A. Edmonds, and K. A. Hibbard, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747-757. https://doi.org/10.1038/nature08823
  47. Orr, J. C., V. J. Fabry, and O. Aumont, 2005: Anthropogenic ocean acidification over the twenty-first century and its impact on marine calcifying organisms. Nature, 437, 681-686. https://doi.org/10.1038/nature04095
  48. Palmer, J. R. and I. J. Totterdell, 2001: Production and export in a global ocean ecosystem model. Deep Sea Res., Pt. I, 48, 1169-1198. https://doi.org/10.1016/S0967-0637(00)00080-7
  49. Park, G. H., 2010: Variability of global net sea-air $CO_{2}$ fluxes over the last three decades using empirical relationships. Tellus, 62B, 352-368.
  50. Piao S., P. Ciais, and P. Friedlingstein, 2009: Spatiotemporal patterns of terrestrial carbon cycle during the 20th century. Global Biogeochemical Cycles, 23, GB4026.
  51. Pyo, J. H., S. U. Kim, and H. T. Mun, 2003: A Study on the carbon budget in pinus koreans is plantation. Journal of Ecology and Environment, 26, 129-134.
  52. Revelle, R. and H. Suess, 1957: Carbon Dioxide Exchange between atmosphere and ocean and the question of an increase of atmospheric $CO_{2}$ during the past decades. TELUS, 9, 18-27.
  53. Riahi, K., S. Rao, and V. Krey, 2011: RCP 8.5 - A scenario of comparatively high greenhouse gas emission. J. Climate Change, 109, 33-57. https://doi.org/10.1007/s10584-011-0149-y
  54. Sabine, C. L., and R. A. Feely, 2007: The oceanic sink for carbon dioxide. Greenhouse Gas Sinks., Eds., CABI, 31-49.
  55. Sarmiento, J. L., M. Gloor, and N. Gruber, 2010: Trends and regional distributions of land and ocean carbon sinks. Biogeosciences, 7, 2351-2367. https://doi.org/10.5194/bg-7-2351-2010
  56. Shevliakova, E., S. W. Pacala, and S. Malyshev, 2009: Carbon cycling under 300 years of land use change : Importance of the secondary vegetation sink. Global Biogeochemical Cycles, 23, GB2022.
  57. Sim, C. S., 2010: Sources/Sinks Analysis with Satellite Sensing for Exploring Global Atmospheric $CO_{2}$ Distributions, Korea Environment Institue.
  58. Takahashi, T., J. Olafsson, and G. John, 1993: Seasonal variation of $CO_{2}$ and nutrients in the high-latitude surface oceans: A comparative study, Global Biogeochemical Cycles, 7, 843-878. https://doi.org/10.1029/93GB02263
  59. Takahashi, T., S. C. Sutherland, and R. Wanninkhof., 2009: Climatological mean and decadal change in surface ocean p$CO_{2}$, and net sea-air $CO_{2}$ flux over the global oceans, Deep-Sea Research II, 56, 554-577. https://doi.org/10.1016/j.dsr2.2008.12.009
  60. Taylor, K. E., J. R. Stouffer, and G. A. Meehl, 2012, An overview of CMIP5 and the experiment design, American Meteological Society, 2012, April, 485-498, DOI:10.1175/BAMS-D-11-00094.1
  61. Van Vuuren, D. P., P. Lucas, and H. Hilderink, 2007: Downscaling drivers of global environmental change. Enabling use of global SRES scenarios at the national and grid levels. Glob. Environ. Change, 17, 114-130. https://doi.org/10.1016/j.gloenvcha.2006.04.004
  62. Wannikhof, R., G.-H. Park, and T. Takahashi, 2013: Global ocean carbon uptake: magnitude, variability and trends, Biogeosciences, 10, 1983-2000. https://doi.org/10.5194/bg-10-1983-2013
  63. Yoo, S. j., W.-K. Lee, and Y. H. Son, 2012: Estimation of vegetation carbon budget in South Korea using ecosystem model and spatio-temporal environmental information. Korean Journal of Remote Sensing, 28, 145-157. https://doi.org/10.7780/kjrs.2012.28.1.145
  64. Zeng, N., A. Mariotti, and P. Wetzel, 2005: Terrestrial mechanisms of interannual $CO_{2}$ variability. Global Biogeochemical Cycles, 19, GB1016, pp. 15.