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Abstract 

This study aims to present a hydraulic transitory study as MOC applications for solving the Saint-Venant equations 

in two case studies: 1) in a penstock of a small hydropower system as a simple pipeline in the case of valve-closure in 

the downstream boundary with a reservoir in the upstream boundary; and 2) for discharge propagation into a channel by 

velocity and depth of the flow channel along space evaluation. The proposed methodology by Chaudry [5] concerning 

the development of hydrodynamic models was used. The obtained results for first and second case study has been 

confirmed that MOC numerical approach is useful for several engineering purposes, including cases of hydraulic 

transients and discharge propagation in hydraulic systems. 

Keywords: Method of characteristics, Hydraulic transient, Discharge propagation, Saint-Venant equations Numerical 

Approach, Hydraulic Systems. 

 

1. Introduction 

Hydraulic transient events occur during a change in state from one steady or equilibrium condition to another, according  to Afshar 

et al. [2]. Examples include after sudden valve opening or closure, starting or stopping of pumps or turbines, mechanical failure of an 

item, rapid changes in demand condition, etc. [1]. The main components of these disturbances are pressure and flow changes that bring 

about propagation of pressure waves throughout the system, and velocity of this wave may exceed 1000 m/s, which may lead to severe 

damages [1, 2]. Since within any pipeline system head and flow distribution in the system is predicted at different operating conditions, 

the modeling of these phenomena is possible and is pursued in this paper. 

Various numerical approaches have been introduced for calculation of the pipeline transients, including method of characteristics 

(MOC), finite volume method (FVM), finite element method (FEM), wave characteristics method (WCM), and finite difference 

method (FDM). Among these methods, MOC is the most commonly used method due to its simplicity and its superior performance as 

compared with other methods [2]. 

The water hammer effects caused by closure of spherical valves against discharge were studied by Karadžić et al. [8], in which the 

case study analyzed a Perućica high-head hydropower plant (HPP) in Montenegro. In this HPP case study, safety spherical valves (inlet 

turbine valves) have been refurbished on the first two Pelton turbines unit. According to the authors (op. cit.), the spherical valve 

boundary condition was incorporated into the MOC algorithm. As a result, we found that flow conditions do not have a significant 

impact on the spherical valve closure time for the cases investigated by Karadžić et al. [8], and the developed numerical models show 

reasonable agreement with measured results.  

In spite of the lack of experiments for quantitative validation, the purpose of the present paper is to present computational results that 

are expected to be instructive for the optimum design of the SHPs to mitigate the potential damage caused by valve-induced closing-

time water hammers. 
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2. Methodology 

2.1.  The Saint-Venant Equations 

We use the methodology proposed by Chaudry [5] concerning the development of hydrodynamic models, in which runoff is 

regarded as a phenomenon using the laws of physics, namely conservation of mass (assuming space), conservation of momentum 

etc.  

Equations (1) and (2) , e.g., mass and momentum conservation equations, have been called the Saint-Venant equations. They 

are partial differential equations with few explicit solutions, as recommended by Chaudhry [5]. 
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where ν is the speed; S0 is the slope of the water line (slope of the bottom); and Sf is the slope of the energy line. 

By assuming one-dimensional flow and based on the continuity and momentum equations that describe the general behavior of 

fluids in a closed pipe in terms of two variables (i.e., y: piezometric head, and ν: fluid velocity), the analyses of most hydraulic 

transients in pressurized systems may be carried out. Wave propagation velocity or celerity, c, friction f, and pipe diameter D are 

pipe parameters that can be considered constant through time, despite the fact that they are spatial functions, as recommended by 

Izquierdo and Iglesias [7]. 

The alternatives for solving such equations for both the discharge and depth of water variations along both the flow (x) and 

over time (t), according to Chaudhry [5] are the following: 

I) To simplify the equations. 

II) To use numerical methods (by replacement of derived by differences). 

III) To make changes. 

 

2.1.1.  Methods of characteristics (MOC) 

This method aims to transform the two partial differential equations (with two independent terms xv   and  tv   ) 

into ordinary equations that have more convenient properties for numerical calculation and also allow explicit solutions [5]. The 

particle trajectories within the wave can be observed in eq. 3 to 6, according to Chaudhry [5]: 
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By observing eq. (3) to (6), the two partial differential equations have expanded to four ordinary differential equations 

simplifying the work of resolution as can be seen [5] in fig. 1. 

 
Fig. 1 Characteristics equations. Source: elaborated by the authors as based on Chaudhry [5] 

 

If c
+
 and c

-
 intersect in P point, the eq. (4) and (6) can be solved simultaneously (P as intersection of c

+
 and c

-
). 

 

2.1.2.  Solving strategy of the four equations 

When the numerical solution of the differential equation is obtained, it is possible to replace the derivative by these approaches. 

Thus, the approach gives the following: 
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The Implicit MOC was proposed by Afshar and Rohani [1] and aims to alleviate the shortcomings and limitations of the 

mostly used conventional MOC. It allows for any arbitrary combination of devices in the pipeline system. The Implicit MOC was 

used to solve two example problems of transient flow caused by failure of a pump system and closure of a valve, and the results 

were presented and compared with those of the explicit MOC.  

The approximation of an implicit differential equation is stable—and sometimes unconditionally stable—while the explicit is 

unstable unless Δt is very small and a consistent width Δx has been chosen, and according to the Courant condition, as 

recommended by Tucci [10]:  
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The simultaneous resolution of these equations provides coordinates of P as shown in Figure 2a. The solution to the explicit 

scheme is straightforward, as recommended by Chaudhry [5]. Equations (3) to (6) can be written as follows in eq. (9) to (12): 
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Since P is known, the equations I and IV (eq. 2 and 15) must be searched with the coordinates xA and xB, and the equations II 

and IV (equations 10 and 11) are numerically solved in order to obtain vp and yp into the all grid points, as recommended by 

Chaudhry [5]. The contouring points have no negative feature (c
+
 and c

-
) so that the channel correctly ends. This calculation is 

applied only to "interior points" but not for points where the contour has only one characteristic curve. At x=0 there is only the 

negative curve (c
-
) and at x=L there is only a positive curve (c

+
) [5]. 

In these contouring points, the characteristic equation for v and y (II and IV, i.e., eq.10 and 12) must be supplemented by another 

equation from the boundary condition (Figure 2b). Generally, at x=0 the hydrograph is used as an input boundary condition, and at  

the extreme downstream (x=L) a relationship between flow and elevation (curve-key) is also a boundary condition [5]. This 

sequence of calculations is described by Streeter and Wylie [9] and was recommended by Chaudhry [5]. 
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Fig. 2 MOC: a) Solving strategy of the characteristic equations with a regular grid and b) Boundary conditions in 

the characteristic equations solving strategy with a regular grid. Source: adapted from Chaudhry [5] 
 

    

A hydraulic transitory study in a small hydropower system by the MOC was studied also by Barros, Tiago Filho, and Silva [3]. 

Also, Barros et al. [4] studied MOC in order to surge tank dimensioning for Small Hydro Power (SHP) plant design, especially 

regarding its surge tank sizing. For this purpose, the authors (op. cit.) used the criteria for maximum allowable pressure, as studied 

in the warmer hammer. We also use the maximum permissible overspeed, i.e., the last one, in the case of load rejection, according 

to Brazilian Electric Power, Eletrobras [6]. 

 

3. Data of cases studies 

This study aims to present the hydraulic transitory study as MOC applications for solving the Saint-Venant equations in two 

case studies as follows: 

 

3.1 Valve Closure in a Small Hydropower System 

A spreadsheet in Microsoft®  Excel®  for modelling water hammer as proposed in Chaudhry [5] and presented by Streeter and 

Wylie [9] was developed in order to conduct a simple case study that aims at valve-closing at the end of downstream, and 

considers a constant level upstream reservoir (Figure 3). The valve-closing equation was specified by CdAv/(CdAv)0 = (1-t / tc)m 

where tc was the closure-time whose value ranged from 4.0 to 12.0 s;  m=3.2; L=2,152.50 meters; D= 4 meters; f=0.019, 13.82 

m
3
/s for turbine discharge and H0=182.00 meters. For these calculations, x  was equal to 706.20 meters and 15.0t s were 

used. Equations (4) and (6) have been solved by the MOC using a numerical grid, as recommended by Streeter and Wylie [6] and 

Chaudhry [5]. 

  

 
Fig. 3 Schematic representation of system of the valve closure in a small hydropower case study 

 

3.2 Discharge Propagation into a Channel 

For this study case, an entry hydrogram was inserted into a rectangular channel with a width of 6.1 meters, length of 3,048 

meters, slope of 0.0016, and a uniform steady flow with nominal depth of 2.44 meters. The nominal height of the uniform flow is 

yn = 6.0 ft, and the input hydrograph is presented in Figure 4. The Chézy coefficient is C = 100, and a Microsoft®  Excell®  

spreadsheet calculated the velocity and depth of flow into the channel at each interval of space. The characteristic curve of the 

discharge in the downstream extremity is Q = 158.(y - 3.25)
3/2

. Also in this case, eq. (4) and (6) have been solved by the MOC 

using a numerical grid (Streeter and Wylie [6] and Chaudhry [5]). 
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Fig. input hydrograph in a discharge propagation into a channel case study 

 

4. Results and discussion 

4.1.   Water hammer results 

The pressures over the valve (mca) for the various valve closure-times (between 4s and 12s) are presented in the graph in 

Figure 5. Table 1 shows the pressure over values for the first two peak pressures, pi, observed in Figure 5, referring to the times of 

1.65s and 3.15s (Table 1). 

 
Fig 5. Variation of pressure over the valve 

 For instance, in the calculation of pressure and depression for valve closure-time, t = 4s: 

• Overpressure: (
+
hs) resulted in a pressure with value of pi equal to 219.97 mca, in time equal to 1.65 s after valve-

cloruse (elapsed time);  

• Depression: (
-
hs) resulted in a pressure with value of pi equal to 161.10 mca, in elapsed time equal to 4 s. 

The calculation of pressure and depression for valve closure-time, t = 12s: 

• Overpressure: (
+
hs) resulted in a pressure with value of pi equal to 196.42 mca, in elapsed time equal to 1.65 s after 

valve-cloruse;  

• Depression: (
-
hs) resulted in a pressure with value of pi equal to 180.57 mca, in elapsed time equal to 4.35 s. 

 

Table 1: Pressure over a valve as a function of the valve closure time 

  

  

Elapsed time (s) 

  Time of valve closure (s) 

  4 5 6 7 8 9 10 11 12 

1.65 219.97 214.41 210.00 206.49 203.67 201.35 199.43 197.81 196.42 

3.15 212.39 209.96 206.76 203.47 200.38 197.57 195.07 192.84 190.86 

Reduce the pres

sure in relation to

 tc = 4.0 s  

    2.53% 4.53% 6.13% 7.41% 8.46% 9.34% 10.07% 10.70% 

  

1,14% 2,65% 4,20% 5,66% 6,98% 8,16% 9,21% 10,14% 

 

The smaller valve closure-time (between 4s to 12s) calculations result in more pressure over the valve as can be observed from 

the Table 1. This is especially true for the first two peaks at 1.65 s and 3.15 s after valve-closure. At these times after valve-

closing (i.e., 1.65 s and 3.15 s and tc equal to 4 s) pressure values of 219.97 mca and 212.39 mca were obtained. These values for a 

valve closing-time of 12s would be 196.42 mca and 190.86 mca, and represent a decrease in relation to the valve closure-time of 

4s of respectively 10.70% and 10.14%. The behavior of discharge values is much milder for longer periods of valve-closing as can 

be seen from the graphs in Figures 6 to 8. 
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Fig. 6 Discharge at input of pipe in terms of closing times between 4.0 s and 12.0 s 

 
Fig. 7 Discharge in the middle of pipe in terms of closing times between 4.0 s and 12.0 s 

 
Fig. 8 Discharge at the end of pipe in terms of closing times between 4.0 s and 12.0 s 

 

Negative values of discharge for smaller valve closure-times—for instance, for the closure-time tc equal to 4s (fig. 6)—were 

presented at the input of pipe. These values were as large as –5.08 m
3
/s at 4.35s elapsed after valve-closure. For the closing time 

of 12s, the smaller value was -12.45 m
3
/s (at 12.45 s elapsed after valve-closure). In the middle of the tube (fig. 7) for a closing 

time of 4s, the minimum flow rate was -6.67 m
3
/s (at 3.75s elapsed after valve-closure), and for the closing time of 12s the value 

was -0.94 m
3
/s (at 11.4s elapsed after valve-closure). 

 

4.2.  Discharge Propagation into a Channel 

Figures 9 to 11 present simulation results for the first time yP (depth), vP (velocity), and discharge at each interval of space. 
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Fig. 9 results for discharge propagation into a channel: a) discharge (left); and b) velocity (right) 

 
Fig. 10 results for depth as a result to the discharge propagation into a channel 

 

Values of discharge, velocity (vp), and depth (yp) at x=0 and an elapsed time of 850s were 127.70m
3
/s, 3.87m/s, and 5.36m; for 

x=0 and an elapsed time of 1,230s, they were 87.92m
3
/s, 4.49m/s, and 3.21m. 

 

5.  Conclusions 
A method of characteristics (MOC) was used in this paper to simulate the following: the response of a pipe system upstream 

from power plants in the case of valve closure; and discharge propagation into a channel. The first case study was a fictional 

Small Hydro Power (SHP) Plant that exhibited valve-closure at the end of the downstream, and also exhibited a constant level 

reservoir at the extreme upstream. The valve-closure value ranged from 4.0 to 12.0. As a result, the measurement of peak pressure 

over the valve is seen to be reduced within increasing time value, i.e., 4s to 12s. Our simulations also showed that the behavior of 

the discharge values is much milder for longer periods of valve-closing. The benefits that are obtained on reducing the peak 

pressure and the minimum (negative) discharge are greatly justified, since both could reach a value of zero flow at the exit of the 

tube with lower possibility of damages on the pipe by pressure values. 

Therefore, the MOC numerical approach has been useful for several engineering purposes, including cases of hydraulic 

transients and discharge propagation in hydraulic systems. We suggest that a validation of both systems at actual and laboratory 

scales will help to produce more realistic results.  
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Sf 
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yP 

vP 

Cross-section area [L
2
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speed [L/T] 

the slope of the water line (slope of the bottom) 

 

the slope of the energy line 

the unitary side entrance [m] 

depth in channel [L] 
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T 

H0 
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tc 
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surface width [L] 

Head 

the discharge rate [L
3
/T] 

valve closure-time [T] 

Chézy coefficient 

Overpressure in pipe 
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