DOI QR코드

DOI QR Code

Guidelines for the management of myeloproliferative neoplasms

  • Choi, Chul Won (Division of Oncology-Hematology, Department of Internal Medicine, Korea University Guro Hospital) ;
  • Bang, Soo-Mee (Department of Internal Medicine, Seoul National University Bundang Hospital) ;
  • Jang, Seongsoo (Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine) ;
  • Jung, Chul Won (Division of Hematology/Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Kim, Hee-Jin (Department of Laboratory Medicine & Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine) ;
  • Kim, Ho Young (Department of Internal Medicine, Hallym University Sacred Heart Hospital) ;
  • Kim, Soo-Jeong (Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine) ;
  • Kim, Yeo-Kyeoung (Division of Hematology-Oncology, Department of Internal Medicine, Chonnam National University Hwasun Hospital) ;
  • Park, Jinny (Division of Hematology-Oncology, Department of Internal Medicine, Gachon University Gil Medical Center) ;
  • Won, Jong-Ho (Division of Hematology-Oncology, Department of Internal Medicine, Soonchunhyang University College of Medicine)
  • Received : 2015.01.07
  • Accepted : 2015.03.30
  • Published : 2015.11.01

Abstract

Polycythemia vera, essential thrombocythemia, and primary myelofibrosis are collectively known as 'Philadelphia-negative classical myeloproliferative neoplasms (MPNs).' The discovery of new genetic aberrations such as Janus kinase 2 (JAK2) have enhanced our understanding of the pathophysiology of MPNs. Currently, the $JAK_2$ mutation is not only a standard criterion for diagnosis but is also a new target for drug development. The $JAK_{1/2}$ inhibitor, ruxolitinib, was the first JAK inhibitor approved for patients with intermediate- to high-risk myelofibrosis and its effects in improving symptoms and survival benefits were demonstrated by randomized controlled trials. In 2011, the Korean Society of Hematology MPN Working Party devised diagnostic and therapeutic guidelines for Korean MPN patients. Subsequently, other genetic mutations have been discovered and many kinds of new drugs are now under clinical investigation. In view of recent developments, we have revised the guidelines for the diagnosis and management of MPN based on published evidence and the experiences of the expert panel. Here we describe the epidemiology, new genetic mutations, and novel therapeutic options as well as diagnostic criteria and standard treatment strategies for MPN patients in Korea.

Keywords

References

  1. Tefferi A, Vardiman JW. Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia 2008;22:14-22. https://doi.org/10.1038/sj.leu.2404955
  2. Barbui T, Barosi G, Birgegard G, et al. Philadelphia-negative classical myeloproliferative neoplasms: critical concepts and management recommendations from European LeukemiaNet. J Clin Oncol 2011;29:761-770. https://doi.org/10.1200/JCO.2010.31.8436
  3. Bang SM, Kim HY, Kim HJ, et al. Diagnostic and therapeutic guideline for myeloproliferative neoplasm. J Korean Med Assoc 2011;54:112-126. https://doi.org/10.5124/jkma.2011.54.1.112
  4. Swerdlow SH, Campo E, Harris NL, et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th ed. Lyon: International Agency for Research on Cancer, 2008.
  5. Klampfl T, Gisslinger H, Harutyunyan AS, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med 2013;369:2379-2390. https://doi.org/10.1056/NEJMoa1311347
  6. Nangalia J, Massie CE, Baxter EJ, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med 2013;369:2391-2405. https://doi.org/10.1056/NEJMoa1312542
  7. Alvarez-Larran A, Ancochea A, Garcia M, et al. WHO-histological criteria for myeloproliferative neoplasms: reproducibility, diagnostic accuracy and correlation with gene mutations and clinical outcomes. Br J Haematol 2014;166:911-919. https://doi.org/10.1111/bjh.12990
  8. Austin SK, Lambert JR. The JAK2 V617F mutation and thrombosis. Br J Haematol 2008;143:307-320. https://doi.org/10.1111/j.1365-2141.2008.07258.x
  9. Sarid N, Eshel R, Rahamim E, et al. JAK2 mutation: an aid in the diagnosis of occult myeloproliferative neoplasms in patients with major intraabdominal vein thrombosis and normal blood counts. Isr Med Assoc J 2013;15:698-700.
  10. Barbui T, Thiele J, Vannucchi AM, Tefferi A. Rethinking the diagnostic criteria of polycythemia vera. Leukemia 2014;28:1191-1195. https://doi.org/10.1038/leu.2013.380
  11. Di Nisio M, Barbui T, Di Gennaro L, et al. The haematocrit and platelet target in polycythemia vera. Br J Haematol 2007;136:249-259. https://doi.org/10.1111/j.1365-2141.2006.06430.x
  12. Wilkins BS, Erber WN, Bareford D, et al. Bone marrow pathology in essential thrombocythemia: interobserver reliability and utility for identifying disease subtypes. Blood 2008;111:60-70. https://doi.org/10.1182/blood-2007-05-091850
  13. Harrison CN, Butt N, Campbell P, et al. Modification of British Committee for Standards in Haematology diagnostic criteria for essential thrombocythaemia. Br J Haematol 2014;167:421-423. https://doi.org/10.1111/bjh.12986
  14. Kiladjian JJ. The spectrum of JAK2-positive myeloproliferative neoplasms. Hematology Am Soc Hematol Educ Program 2012;2012:561-566.
  15. Moliterno AR, Williams DM, Rogers O, Spivak JL. Molecular mimicry in the chronic myeloproliferative disorders: reciprocity between quantitative JAK2 V617F and Mpl expression. Blood 2006;108:3913-3915. https://doi.org/10.1182/blood-2006-03-008805
  16. Vannucchi AM, Antonioli E, Guglielmelli P, et al. Prospective identification of high-risk polycythemia vera patients based on JAK2(V617F) allele burden. Leukemia 2007;21:1952-1959. https://doi.org/10.1038/sj.leu.2404854
  17. Scott LM, Tong W, Levine RL, et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med 2007;356:459-468. https://doi.org/10.1056/NEJMoa065202
  18. Scott LM. The JAK2 exon 12 mutations: a comprehensive review. Am J Hematol 2011;86:668-676. https://doi.org/10.1002/ajh.22063
  19. Kim HJ, Jang JH, Yoo EH, et al. JAK2 V617F and MPL W515L/K mutations in Korean patients with essential thrombocythemia. Korean J Lab Med 2010;30:474-476. https://doi.org/10.3343/kjlm.2010.30.5.474
  20. Ha JS, Kim YK. Calreticulin exon 9 mutations in myeloproliferative neoplasms. Ann Lab Med 2015;35:22-27. https://doi.org/10.3343/alm.2015.35.1.22
  21. Rumi E, Pietra D, Ferretti V, et al. JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. Blood 2014;123:1544-1551. https://doi.org/10.1182/blood-2013-11-539098
  22. Lindsley RC, Ebert BL. The biology and clinical impact of genetic lesions in myeloid malignancies. Blood 2013;122:3741-3748. https://doi.org/10.1182/blood-2013-06-460295
  23. Patnaik MM, Tefferi A. The complete evaluation of erythrocytosis: congenital and acquired. Leukemia 2009;23:834-844. https://doi.org/10.1038/leu.2009.54
  24. Jang JH, Seo JY, Jang J, et al. Hereditary gene mutations in Korean patients with isolated erythrocytosis. Ann Hematol 2014;93:931-935. https://doi.org/10.1007/s00277-014-2006-3
  25. Ho CL, Lasho TL, Butterfield JH, Tefferi A. Global cytokine analysis in myeloproliferative disorders. Leuk Res 2007;31:1389-1392. https://doi.org/10.1016/j.leukres.2006.12.024
  26. Martyre MC, Magdelenat H, Bryckaert MC, Laine-Bidron C, Calvo F. Increased intraplatelet levels of platelet-derived growth factor and transforming growth factor-beta in patients with myelofibrosis with myeloid metaplasia. Br J Haematol 1991;77:80-86. https://doi.org/10.1111/j.1365-2141.1991.tb07952.x
  27. Di Raimondo F, Azzaro MP, Palumbo GA, et al. Elevated vascular endothelial growth factor (VEGF) serum levels in idiopathic myelofibrosis. Leukemia 2001;15:976-980. https://doi.org/10.1038/sj.leu.2402124
  28. Panteli KE, Hatzimichael EC, Bouranta PK, et al. Serum interleukin (IL)-1, IL-2, sIL-2Ra, IL-6 and thrombopoietin levels in patients with chronic myeloproliferative diseases. Br J Haematol 2005;130:709-715. https://doi.org/10.1111/j.1365-2141.2005.05674.x
  29. Mesa RA, Niblack J, Wadleigh M, et al. The burden of fatigue and quality of life in myeloproliferative disorders (MPDs): an international Internet-based survey of 1179 MPD patients. Cancer 2007;109:68-76. https://doi.org/10.1002/cncr.22365
  30. Mesa RA, Schwager S, Radia D, et al. The Myelofibrosis Symptom Assessment Form (MFSAF): an evidence-based brief inventory to measure quality of life and symptomatic response to treatment in myelofibrosis. Leuk Res 2009;33:1199-1203. https://doi.org/10.1016/j.leukres.2009.01.035
  31. Cervantes F, Dupriez B, Pereira A, et al. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood 2009;113:2895-2901. https://doi.org/10.1182/blood-2008-07-170449
  32. Passamonti F, Cervantes F, Vannucchi AM, et al. Dynamic International Prognostic Scoring System (DIPSS) predicts progression to acute myeloid leukemia in primary myelofibrosis. Blood 2010;116:2857-2858. https://doi.org/10.1182/blood-2010-06-293415
  33. Gangat N, Caramazza D, Vaidya R, et al. DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol 2011;29:392-397. https://doi.org/10.1200/JCO.2010.32.2446
  34. Vannucchi AM, Lasho TL, Guglielmelli P, et al. Mutations and prognosis in primary myelofibrosis. Leukemia 2013;27:1861-1869. https://doi.org/10.1038/leu.2013.119
  35. Guglielmelli P, Lasho TL, Rotunno G, et al. The number of prognostically detrimental mutations and prognosis in primary myelofibrosis: an international study of 797 patients. Leukemia 2014;28:1804-1810. https://doi.org/10.1038/leu.2014.76
  36. Guglielmelli P, Barosi G, Pieri L, Antonioli E, Bosi A, Vannucchi AM. JAK2V617F mutational status and allele burden have little influence on clinical phenotype and prognosis in patients with post-polycythemia vera and post-essential thrombocythemia myelofibrosis. Haematologica 2009;94:144-146. https://doi.org/10.3324/haematol.13721
  37. Pardanani A, Guglielmelli P, Lasho TL, et al. Primary myelofibrosis with or without mutant MPL: comparison of survival and clinical features involving 603 patients. Leukemia 2011;25:1834-1839. https://doi.org/10.1038/leu.2011.161
  38. Tefferi A, Vaidya R, Caramazza D, Finke C, Lasho T, Pardanani A. Circulating interleukin (IL)-8, IL-2R, IL-12, and IL-15 levels are independently prognostic in primary myelofibrosis: a comprehensive cytokine profiling study. J Clin Oncol 2011;29:1356-1363. https://doi.org/10.1200/JCO.2010.32.9490
  39. Tefferi A, Cervantes F, Mesa R, et al. Revised response criteria for myelofibrosis: International Working Group-Myeloproliferative Neoplasms Research and Treatment (IWG-MRT) and European LeukemiaNet (ELN) consensus report. Blood 2013;122:1395-1398. https://doi.org/10.1182/blood-2013-03-488098
  40. Emanuel RM, Dueck AC, Geyer HL, et al. Myeloproliferative neoplasm (MPN) symptom assessment form total symptom score: prospective international assessment of an abbreviated symptom burden scoring system among patients with MPNs. J Clin Oncol 2012;30:4098-4103. https://doi.org/10.1200/JCO.2012.42.3863
  41. Mendoza TR, Wang XS, Cleeland CS, et al. The rapid assessment of fatigue severity in cancer patients: use of the Brief Fatigue Inventory. Cancer 1999;85:1186-1196. https://doi.org/10.1002/(SICI)1097-0142(19990301)85:5<1186::AID-CNCR24>3.0.CO;2-N
  42. Scherber R, Dueck AC, Johansson P, et al. The Myeloproliferative Neoplasm Symptom Assessment Form (MPNSAF): international prospective validation and reliability trial in 402 patients. Blood 2011;118:401-408. https://doi.org/10.1182/blood-2011-01-328955
  43. Tefferi A, Hudgens S, Mesa R, et al. Use of the functional assessment of cancer therapy: anemia in persons with myeloproliferative neoplasm-associated myelofibrosis and anemia. Clin Ther 2014;36:560-566. https://doi.org/10.1016/j.clinthera.2014.02.016
  44. Abdel-Wahab OI, Levine RL. Primary myelofibrosis: update on definition, pathogenesis, and treatment. Annu Rev Med 2009;60:233-245. https://doi.org/10.1146/annurev.med.60.041707.160528
  45. Thiele J, Kvasnicka HM, Facchetti F, Franco V, van der Walt J, Orazi A. European consensus on grading bone marrow fibrosis and assessment of cellularity. Haematologica 2005;90:1128-1132.
  46. Andersen CL, Andreasson B, Hasselbalch H, et al. Nordic guidelines on the diagnosis and treatment of patients with myeloproliferative neoplasms [Internet]. Copenhagen (DK): Nordic MPN Study Group, 2013 [cited 2015 Aug 17]. Available from: http://www.nmpn.org/index.php/guidelines/1-nmpn-guidelines-2013/file.
  47. Girodon F, Schaeffer C, Cleyrat C, et al. Frequent reduction or absence of detection of the JAK2-mutated clone in JAK2V617F-positive patients within the first years of hydroxyurea therapy. Haematologica 2008;93:1723-1727. https://doi.org/10.3324/haematol.13081
  48. Vannucchi AM, Pieri L, Guglielmelli P. JAK2 allele burden in the myeloproliferative neoplasms: effects on phenotype, prognosis and change with treatment. Ther Adv Hematol 2011;2:21-32. https://doi.org/10.1177/2040620710394474
  49. Lange T, Edelmann A, Siebolts U, et al. JAK2 p.V617F allele burden in myeloproliferative neoplasms one month after allogeneic stem cell transplantation significantly predicts outcome and risk of relapse. Haematologica 2013;98:722-728. https://doi.org/10.3324/haematol.2012.076901
  50. Ballen KK, Shrestha S, Sobocinski KA, et al. Outcome of transplantation for myelofibrosis. Biol Blood Marrow Transplant 2010;16:358-367. https://doi.org/10.1016/j.bbmt.2009.10.025
  51. Gupta V, Hari P, Hoffman R. Allogeneic hematopoietic cell transplantation for myelofibrosis in the era of JAK inhibitors. Blood 2012;120:1367-1379. https://doi.org/10.1182/blood-2012-05-399048
  52. McLornan DP, Mead AJ, Jackson G, Harrison CN. Allogeneic stem cell transplantation for myelofibrosis in 2012. Br J Haematol 2012;157:413-425. https://doi.org/10.1111/j.1365-2141.2012.09107.x
  53. Reilly JT, McMullin MF, Beer PA, et al. Guideline for the diagnosis and management of myelofibrosis. Br J Haematol 2012;158:453-471. https://doi.org/10.1111/j.1365-2141.2012.09179.x
  54. Tefferi A. Primary myelofibrosis: 2013 update on diagnosis, risk-stratification, and management. Am J Hematol 2013;88:141-150. https://doi.org/10.1002/ajh.23384
  55. Abelsson J, Merup M, Birgegard G, et al. The outcome of allo-HSCT for 92 patients with myelofibrosis in the Nordic countries. Bone Marrow Transplant 2012;47:380-386. https://doi.org/10.1038/bmt.2011.91
  56. Fruehauf S, Buss EC, Tropaly J, Kreipe HH, Ho AD. Myeloablative conditioning in myelofibrosis using i.v. treosulfan and autologous peripheral blood progenitor cell transplantation with high doses of CD34+ cells results in hematologic responses: a follow-up of three patients. Haematologica 2005;90:ECR08.
  57. Huang J, Tefferi A. Erythropoiesis stimulating agents have limited therapeutic activity in transfusion-dependent patients with primary myelofibrosis regardless of serum erythropoietin level. Eur J Haematol 2009;83:154-155. https://doi.org/10.1111/j.1600-0609.2009.01266.x
  58. Tefferi A. Primary myelofibrosis: 2012 update on diagnosis, risk stratification, and management. Am J Hematol 2011;86:1017-1026. https://doi.org/10.1002/ajh.22210
  59. Cervantes F, Alvarez-Larran A, Domingo A, Arellano-Rodrigo E, Montserrat E. Efficacy and tolerability of danazol as a treatment for the anaemia of myelofibrosis with myeloid metaplasia: long-term results in 30 patients. Br J Haematol 2005;129:771-775. https://doi.org/10.1111/j.1365-2141.2005.05524.x
  60. Mesa RA, Steensma DP, Pardanani A, et al. A phase 2 trial of combination low-dose thalidomide and prednisone for the treatment of myelofibrosis with myeloid metaplasia. Blood 2003;101:2534-2541. https://doi.org/10.1182/blood-2002-09-2928
  61. Mesa RA, Yao X, Cripe LD, et al. Lenalidomide and prednisone for myelofibrosis: Eastern Cooperative Oncology Group (ECOG) phase 2 trial E4903. Blood 2010;116:4436-4438. https://doi.org/10.1182/blood-2010-05-287417
  62. Mesa RA. The evolving treatment paradigm in myelofibrosis. Leuk Lymphoma 2013;54:242-251. https://doi.org/10.3109/10428194.2012.710905
  63. Martinez-Trillos A, Gaya A, Maffioli M, et al. Efficacy and tolerability of hydroxyurea in the treatment of the hyperproliferative manifestations of myelofibrosis: results in 40 patients. Ann Hematol 2010;89:1233-1237. https://doi.org/10.1007/s00277-010-1019-9
  64. Odenike O, Tefferi A. Conventional and new treatment options for myelofibrosis with myeloid metaplasia. Semin Oncol 2005;32:422-431. https://doi.org/10.1053/j.seminoncol.2005.06.014
  65. Hasselbalch HC, Kiladjian JJ, Silver RT. Interferon alfa in the treatment of Philadelphia-negative chronic myeloproliferative neoplasms. J Clin Oncol 2011;29:e564-e565. https://doi.org/10.1200/JCO.2011.35.6238
  66. Ianotto JC, Boyer-Perrard F, Gyan E, et al. Efficacy and safety of pegylated-interferon ${\alpha}$-2a in myelofibrosis: a study by the FIM and GEM French cooperative groups. Br J Haematol 2013;162:783-791. https://doi.org/10.1111/bjh.12459
  67. Mesa RA. How I treat symptomatic splenomegaly in patients with myelofibrosis. Blood 2009;113:5394-5400. https://doi.org/10.1182/blood-2009-02-195974
  68. Verstovsek S, Mesa RA, Gotlib J, et al. A double-blind, placebo- controlled trial of ruxolitinib for myelofibrosis. N Engl J Med 2012;366:799-807. https://doi.org/10.1056/NEJMoa1110557
  69. Harrison C, Kiladjian JJ, Al-Ali HK, et al. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med 2012;366:787-798. https://doi.org/10.1056/NEJMoa1110556
  70. Cervantes F, Vannucchi AM, Kiladjian JJ, et al. Three-year efficacy, safety, and survival findings from COMFORT-II, a phase 3 study comparing ruxolitinib with best available therapy for myelofibrosis. Blood 2013;122:4047-4053. https://doi.org/10.1182/blood-2013-02-485888
  71. Pardanani A, Tefferi A, Jamieson C, et al. Long-term follow up of a randomized phase II study of the JAK2-selective inhibitor fedratinib (SAR302503) in patients with myelofibrosis (MF). Blood 2013;122(21):4047. https://doi.org/10.1182/blood-2013-02-485888
  72. Komrokji RS, Wadleigh M, Seymour JF, et al. Results of a phase 2 study of pacritinib (SB1518), a novel oral JAK2 inhibitor, in patients with primary, post-polycythemia vera, and post-essential thrombocythemia myelofibrosis. Blood 2011;118(21):130-131.
  73. Pardanani A, Laborde RR, Lasho TL, et al. Safety and efficacy of CYT387, a JAK1 and JAK2 inhibitor, in myelofibrosis. Leukemia 2013;27:1322-1327. https://doi.org/10.1038/leu.2013.71
  74. Crisa E, Venturino E, Passera R, et al. A retrospective study on 226 polycythemia vera patients: impact of median hematocrit value on clinical outcomes and survival improvement with anti-thrombotic prophylaxis and non-alkylating drugs. Ann Hematol 2010;89:691-699. https://doi.org/10.1007/s00277-009-0899-z
  75. Passamonti F, Rumi E, Pietra D, et al. A prospective study of 338 patients with polycythemia vera: the impact of JAK2 (V617F) allele burden and leukocytosis on fibrotic or leukemic disease transformation and vascular complications. Leukemia 2010;24:1574-1579. https://doi.org/10.1038/leu.2010.148
  76. Marchioli R, Finazzi G, Landolfi R, et al. Vascular and neoplastic risk in a large cohort of patients with polycythemia vera. J Clin Oncol 2005;23:2224-2232. https://doi.org/10.1200/JCO.2005.07.062
  77. Cervantes F, Passamonti F, Barosi G. Life expectancy and prognostic factors in the classic BCR/ABL-negative myeloproliferative disorders. Leukemia 2008;22:905-914. https://doi.org/10.1038/leu.2008.72
  78. Barosi G, Birgegard G, Finazzi G, et al. Response criteria for essential thrombocythemia and polycythemia vera: result of a European LeukemiaNet consensus conference. Blood 2009;113:4829-4833. https://doi.org/10.1182/blood-2008-09-176818
  79. Barbui T, Finazzi MC, Finazzi G. Front-line therapy in polycythemia vera and essential thrombocythemia. Blood Rev 2012;26:205-211. https://doi.org/10.1016/j.blre.2012.06.002
  80. Hensley B, Geyer H, Mesa R. Polycythemia vera: current pharmacotherapy and future directions. Expert Opin Pharmacother 2013;14:609-617. https://doi.org/10.1517/14656566.2013.779671
  81. Marchioli R, Finazzi G, Specchia G, et al. Cardiovascular events and intensity of treatment in polycythemia vera. N Engl J Med 2013;368:22-33. https://doi.org/10.1056/NEJMoa1208500
  82. Landolfi R, Marchioli R, Kutti J, et al. Efficacy and safety of low-dose aspirin in polycythemia vera. N Engl J Med 2004;350:114-124. https://doi.org/10.1056/NEJMoa035572
  83. Silver RT. Long-term effects of the treatment of polycythemia vera with recombinant interferon-alpha. Cancer 2006;107:451-458. https://doi.org/10.1002/cncr.22026
  84. Steven HS, Swerdlow EC, Harris NL, Mature T- and NKcell neoplasms. In: Swerdlow SH, Campo E, Harris NL, eds. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. 4th ed. Lyon: International Agency for Research on Cancer, 2008:269-320.
  85. Tiede A, Rand JH, Budde U, Ganser A, Federici AB. How I treat the acquired von Willebrand syndrome. Blood 2011;117:6777-6785. https://doi.org/10.1182/blood-2010-11-297580
  86. Barosi G, Mesa R, Finazzi G, et al. Revised response criteria for polycythemia vera and essential thrombocythemia: an ELN and IWG-MRT consensus project. Blood 2013;121:4778-4781. https://doi.org/10.1182/blood-2013-01-478891
  87. Ruggeri M, Finazzi G, Tosetto A, Riva S, Rodeghiero F, Barbui T. No treatment for low-risk thrombocythaemia: results from a prospective study. Br J Haematol 1998;103:772-777. https://doi.org/10.1046/j.1365-2141.1998.01021.x
  88. Tefferi A, Gangat N, Wolanskyj AP. Management of extreme thrombocytosis in otherwise low-risk essential thrombocythemia; does number matter? Blood 2006;108:2493-2494. https://doi.org/10.1182/blood-2006-05-025544
  89. Cortelazzo S, Finazzi G, Ruggeri M, et al. Hydroxyurea for patients with essential thrombocythemia and a high risk of thrombosis. N Engl J Med 1995;332:1132-1136. https://doi.org/10.1056/NEJM199504273321704
  90. Finazzi G, Ruggeri M, Rodeghiero F, Barbui T. Second malignancies in patients with essential thrombocythaemia treated with busulphan and hydroxyurea: long-term follow-up of a randomized clinical trial. Br J Haematol 2000;110:577-583. https://doi.org/10.1046/j.1365-2141.2000.02188.x
  91. Harrison CN, Campbell PJ, Buck G, et al. Hydroxyurea compared with anagrelide in high-risk essential thrombocythemia. N Engl J Med 2005;353:33-45. https://doi.org/10.1056/NEJMoa043800
  92. Watson KV, Key N. Vascular complications of essential thrombocythaemia: a link to cardiovascular risk factors. Br J Haematol 1993;83:198-203. https://doi.org/10.1111/j.1365-2141.1993.tb08272.x
  93. Pernerstorfer T, Stohlawetz P, Stummvoll G, et al. Lowdose aspirin does not lower in vivo platelet activation in healthy smokers. Br J Haematol 1998;102:1229-1231. https://doi.org/10.1046/j.1365-2141.1998.00883.x
  94. van Genderen PJ, Mulder PG, Waleboer M, van de Moesdijk D, Michiels JJ. Prevention and treatment of thrombotic complications in essential thrombocythaemia: efficacy and safety of aspirin. Br J Haematol 1997;97:179-184. https://doi.org/10.1046/j.1365-2141.1997.d01-2127.x
  95. van Genderen PJ, Prins FJ, Michiels JJ, Schror K. Thromboxane- dependent platelet activation in vivo precedes arterial thrombosis in thrombocythaemia: a rationale for the use of low-dose aspirin as an antithrombotic agent. Br J Haematol 1999;104:438-441. https://doi.org/10.1046/j.1365-2141.1999.01224.x
  96. Griesshammer M, Heimpel H, Pearson TC. Essential thrombocythemia and pregnancy. Leuk Lymphoma 1996;22 Suppl 1:57-63. https://doi.org/10.3109/10428199609074361
  97. Martinelli P, Martinelli V, Agangi A, et al. Interferon alfa treatment for pregnant women affected by essential thrombocythemia: case reports and a review. Am J Obstet Gynecol 2004;191:2016-2020. https://doi.org/10.1016/j.ajog.2004.05.001
  98. Delage R, Demers C, Cantin G, Roy J. Treatment of essential thrombocythemia during pregnancy with interferon- alpha. Obstet Gynecol 1996;87(5 Pt 2):814-817. https://doi.org/10.1016/S0029-7844(96)80429-7
  99. Milano V, Gabrielli S, Rizzo N, et al. Successful treatment of essential thrombocythemia in a pregnancy with recombinant interferon-alpha 2a. J Matern Fetal Med 1996;5:74-78.

Cited by

  1. Advances in the Diagnosis of Myeloproliferative Neoplasms vol.90, pp.4, 2015, https://doi.org/10.3904/kjm.2016.90.4.281
  2. Evolution of Myelofibrosis Treatment vol.90, pp.4, 2015, https://doi.org/10.3904/kjm.2016.90.4.293
  3. L -Amino acid oxidase isolated from Calloselasma rhodostoma snake venom induces cytotoxicity and apoptosis in JAK2V617F-positive cell lines vol.38, pp.2, 2016, https://doi.org/10.1016/j.bjhh.2016.03.004
  4. Characterization and Prognosis Significance of JAK2 (V617F), MPL, and CALR Mutations in Philadelphia-Negative Myeloproliferative Neoplasms vol.17, pp.10, 2016, https://doi.org/10.22034/apjcp.2016.17.10.4647
  5. Real world epidemiology of myeloproliferative neoplasms: a population based study in Korea 2004-2013 vol.96, pp.3, 2017, https://doi.org/10.1007/s00277-016-2902-9
  6. Philadelphia chromosome-negative classical myeloproliferative neoplasms: revised management recommendations from European LeukemiaNet vol.32, pp.5, 2015, https://doi.org/10.1038/s41375-018-0077-1
  7. Major Changes to the 2017 Revision of the World Health Organization Classification of Myeloproliferative Neoplasms vol.93, pp.4, 2015, https://doi.org/10.3904/kjm.2018.93.4.351
  8. Recent insights regarding the molecular basis of myeloproliferative neoplasms vol.35, pp.1, 2015, https://doi.org/10.3904/kjim.2019.317
  9. The Myeloproliferative Neoplasm Landscape: A Patient’s Eye View vol.37, pp.5, 2015, https://doi.org/10.1007/s12325-020-01314-0
  10. The 2020 revision of the guidelines for the management of myeloproliferative neoplasms vol.36, pp.1, 2021, https://doi.org/10.3904/kjim.2020.319
  11. Thrombotic and hemorrhagic events in 2016 World Health Organization-defined Philadelphia-negative myeloproliferative neoplasm vol.36, pp.5, 2015, https://doi.org/10.3904/kjim.2020.634