DOI QR코드

DOI QR Code

Higher-order assumed stress quadrilateral element for the Mindlin plate bending problem

  • Li, Tan (State Key Laboratory for Structural Analysis of Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology) ;
  • Qi, Zhaohui (State Key Laboratory for Structural Analysis of Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology) ;
  • Ma, Xu (State Key Laboratory for Structural Analysis of Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology) ;
  • Chen, Wanji (Key Laboratory of Liaoning Province for Composite Structural Analysis of Aero craft and Simulation, Shenyang Aerospace University)
  • 투고 : 2014.06.28
  • 심사 : 2014.07.31
  • 발행 : 2015.05.10

초록

In this paper an 8-node quadrilateral assumed stress hybrid Mindlin plate element with $39{\beta}$ is presented. The formulation is based on complementary energy principle. The proposed element is free of shear locking and is capable of passing all the patch tests, especially the non-zero constant shear enhanced patch test. To accomplish this purpose, special attention is devoted to selecting boundary displacement interpolation and stress approximation in domain. The arbitrary order Timoshenko beam function is successfully used to derive the boundary displacement interpolation. According to the equilibrium equations, an appropriate stress approximation is rationally derived. Particularly, in order to improve element's accuracy, the assumed stress field is derived by employing $39{\beta}$ rather than conventional $21{\beta}$. The resulting element can be adopted to analyze both moderately thick and thin plates, and the convergence for the very thin case can be ensured theoretically. Excellent element performance is demonstrated by a wide of experimental evaluations.

키워드

과제정보

연구 과제 주관 기관 : National Natural Sciences Foundations of China

참고문헌

  1. Auricchio, F. and Taylor, R.L. (1994), "A shear deformation plate element with an exact thin limit", Comp. Meth. Appl. Mech. Eng., 3, 393-412.
  2. Ayad, R., Dhatt, G. and Batoz, J.L. (1998), "A new hybrid-mix variational approach for Reissner-Mindlin plate, the MiSP model", Int. J. Numer. Meth. Eng., 42, 1149-1179. https://doi.org/10.1002/(SICI)1097-0207(19980815)42:7<1149::AID-NME391>3.0.CO;2-2
  3. Bathe, K.J. and Dvorkin, E.N. (1985), "A four node plate bending element based on Mindlin/Reissner plate theory and mixed interpolation", Int. J. Numer. Meth. Eng., 21, 367-383. https://doi.org/10.1002/nme.1620210213
  4. Bathe, K.J. and Dvorkin, E.N. (1986), "A formulation of general shell elements-the use of mixed interpolation of tonsorial components", Int. J. Numer. Meth. Eng., 22, 697-722. https://doi.org/10.1002/nme.1620220312
  5. Bathe, K.J., Iosilevich, A. and Chapelle, D. (2000), "An evaluation of the MITC shell elements", Comput. Struct., 75, 1-30. https://doi.org/10.1016/S0045-7949(99)00214-X
  6. Batoz, J.L. and Lardeur, P. (1989), "A discrete shear triangular nine d.o.f. element for the analysis of thick to very thin plates", Int. J. Numer. Meth. Eng., 29, 533-560.
  7. Batoz, J.L. and Katili, I. (1992), "On a simple triangular Reissner/Mindlin plate element based on incompatible modes and discrete constraints", Int. J. Numer. Meth. Eng., 35, 1603-1632. https://doi.org/10.1002/nme.1620350805
  8. Bazeley, G.P., Cheung, Y.K., Irons, B.M. and Zienkiewicz, O.C. (1965), "Triangular elements in plate bending conforming and non-conforming solutions", Proceedings of the Conference on Matrix Methods in Structural Mechanics, Dayton, Ohio: Wright Patterson Air Force Base.
  9. Belytschko, T. and Tsay, C.S. (1983), "A stabilization procedure for the quadrilateral plate element with one point quadrature", Int. J. Numer. Meth. Eng., 19, 405-419. https://doi.org/10.1002/nme.1620190308
  10. Cen, S., Long, Y.Q., Yao, Z.H. and Chiew, S.P. (2006), "Application of the quadrilateral area coordinate method: A new element for Mindlin-Reissner plate", Int. J. Numer. Meth. Eng., 66, 1-45. https://doi.org/10.1002/nme.1533
  11. Cen, S., Shang, Y., Li, C.F. and Li, H.G. (2014), "Hybrid displacement function element method: a simple hybrid-Trefftz stress element method for analysis of Mindlin-Reissner plate", Int. J. Numer. Meth. Eng., 98(3), 203-234. https://doi.org/10.1002/nme.4632
  12. Chen, W.J. (2006), "Enhanced patch test of finite element methods", Sci. China: Ser. G. Phys-Mech. Astron., 49, 213-227. https://doi.org/10.1007/s11433-006-0213-1
  13. Chen, W.J. and Cheung, Y.K. (1987), "A New Approach For The Hybrid Element Method", Int. J. Numer. Meth. Eng., 24(9), 1697-1709. https://doi.org/10.1002/nme.1620240907
  14. Chen, W.J. and Cheung, Y.K. (1996), "The Non-conforming Element Method and Refined Hybrid Method for Axisymmetric Solid", Int. J. Numer. Meth. Eng., 39(15), 2509-2529. https://doi.org/10.1002/(SICI)1097-0207(19960815)39:15<2509::AID-NME963>3.0.CO;2-8
  15. Chen, W.J. and Cheung, Y.K. (1997), "Refined nonconforming quadrilateral thin plate bending element", Int. J. Numer. Meth. Eng., 40(21), 3919-3935. https://doi.org/10.1002/(SICI)1097-0207(19971115)40:21<3919::AID-NME243>3.0.CO;2-A
  16. Chen, W.J. and Cheung, Y.K. (2000), "Refined quadrilateral element based on Mindlin/Reissner plate theory", Int. J. Numer. Meth. Eng., 47, 605-627. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<605::AID-NME785>3.0.CO;2-E
  17. Chen, W.J. and Cheung, Y.K. (2001), "Refined 9-dof triangular Mindlin plate elements", Int. J. Numer. Meth. Eng., 51, 1259-1281. https://doi.org/10.1002/nme.196
  18. Chen, W.J., Wang, J.Z. and Zhao, J. (2009), "The functions for patch test in finite element analysis of Mindlin plate and thin cylindrical shell", Sci. China: Ser. G. Phys-Mech. Astron., 5, 762-767.
  19. Chen, W.J. and Zheng, S.J. (1998), "Refined hybrid degenerated shell element for geometrically non-linear analysis", Int. J. Numer. Meth. Eng., 41, 1195-1213. https://doi.org/10.1002/(SICI)1097-0207(19980415)41:7<1195::AID-NME316>3.0.CO;2-F
  20. De Miranda, S. and Ubertini, F. (2006), "A simple hybrid stress element for shear deformable plates", Int. J. Numer. Meth. Eng., 65, 808-833. https://doi.org/10.1002/nme.1467
  21. Hughes, T.J.R., Cohen, M. and Haroun, M. (1978), "Reduced and selective integration techniques in finite element analysis of plates", Nucl. Eng. Des., 46, 203-222. https://doi.org/10.1016/0029-5493(78)90184-X
  22. Ibrahimbegovic, A. (1992), "Plate quadrilateral finite elements with incompatible modes", Commun. Appl. Numer. Meth., 8, 497-504. https://doi.org/10.1002/cnm.1630080803
  23. Jelenic, G. and Papa, E. (2011), "Exact solution of 3D Timoshenko beam problem using linked interpolation of arbitrary order", Arch. Appl. Mech., 18, 171-183.
  24. Katili, I. (1993), "A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields-Part I: an extended DKT element for thick-plate bending analysis", Int. J. Numer. Meth. Eng., 36, 1859-1883. https://doi.org/10.1002/nme.1620361106
  25. Katili, I. (1993), "A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields-Part II: an extended DKQ element for thick-plate bending analysis", Int. J. Numer. Meth. Eng., 36, 1885-1908. https://doi.org/10.1002/nme.1620361107
  26. Lee, S.W. and Pian, T.H.H. (1978), "Improvement of plate and shell finite element by mixed formulation", AIAA J., 16, 29-34. https://doi.org/10.2514/3.60853
  27. MacNeal, R.H. (1978), "A simple quadrilateral shell element", Comput. Struct., 8, 175-183. https://doi.org/10.1016/0045-7949(78)90020-2
  28. Malkus, D.S. and Hughes, T.J.R. (1978), "Mixed finite element methods-reduced and selective integration techniques: a unification of concepts", Comp. Meth. Appl. Mech. Eng., 15, 63-81. https://doi.org/10.1016/0045-7825(78)90005-1
  29. Taylor, R.L., Simo, T.C., Zienkiewicz, O.C. and Chan, A.C.H. (1986), "The patch test: a condition for assessing FEM convergence", Int. J. Numer. Meth. Eng., 22(1), 39-62. https://doi.org/10.1002/nme.1620220105
  30. Strang, G. (1972), "Variational crimes in the finite element method", Ed. Aziz, A.R., The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Academic Press, New York.
  31. Stummel, F. (1979), "The generalized patch test", SIAM J. Numer. Anal., 16(3), 449-471. https://doi.org/10.1137/0716037
  32. Stummel, F. (1980), "The limitation of the atch test", Int. J. Numer. Meth. Eng., 15(2), 177-188. https://doi.org/10.1002/nme.1620150203
  33. Soh, A.K., Long, Z.F. and Cen, S. (1999), "A new nine DOF triangular element for analysis of thick and thin plates", Comput. Mech., 24, 408-417. https://doi.org/10.1007/s004660050461
  34. Soh, A.K., Cen, S., Long, Y.Q. and Long, Z.F. (2001), "A new twelve DOF quadrilateral element for analysis of thick and thin plates", Eur. J. Mech. A/Solid., 20, 299-326. https://doi.org/10.1016/S0997-7538(00)01129-3
  35. Sze, K.Y. and Chow, C.L. (1991), "A mixed formulation of 4-node Mindlin/Reissner shell/plate element with interpolated transverse shear strains", Comput. Struct., 40, 775-784. https://doi.org/10.1016/0045-7949(91)90244-G
  36. Soh, A.K., Long, Z.F. and Cen, S. (1999), "A Mindlin plate triangular element with improved interpolation based on Timoshenko's beam theory", Commun. Numer. Meth. Eng., 15, 527-532. https://doi.org/10.1002/(SICI)1099-0887(199907)15:7<527::AID-CNM273>3.0.CO;2-B
  37. Wang, M. (2001), "On the necessity and sufficiency of the patch test for convergence of nonconforming finite elements", SIAM J. Numer. Anal., 39, 363-384. https://doi.org/10.1137/S003614299936473X
  38. Zhang, H.X. and Kuang, J.S. (2007), "Eight-node Reissner-Mindlin plate element based on boundary interpolation using Timoshenko beam function", Int. J. Numer. Meth. Eng., 69, 1345-1373. https://doi.org/10.1002/nme.1809
  39. Zienkiewicz, O.C. and Taylor, R.L. (1997), "The finite element patch test revisited a computer test for convergence, vali-dation and estimates", Comput. Meth. Appl. Math. Eng., 149(1-4), 223-254. https://doi.org/10.1016/S0045-7825(97)00085-6
  40. Zienkiewicz, O.C., Taylor R.L., and Too, J.M. (1971), "Reduced integration technique in general analysis of plates and shells", Int. J. Numer. Meth. Eng., 3, 275-290. https://doi.org/10.1002/nme.1620030211
  41. Zienkiewicz, O.C., Xu, Z., Zeng, L.F., Samuelsson, A. and Wiberg, N.E. (1993), "Linked interpolation for Reissner-Mindlin plate element: Part I-a simple quadrilateral", Int. J. Numer. Meth. Eng., 36, 30433056.

피인용 문헌

  1. Distortion-resistant and locking-free eight-node elements effectively capturing the edge effects of Mindlin–Reissner plates vol.34, pp.2, 2017, https://doi.org/10.1108/EC-04-2016-0143
  2. A Refined Higher-Order Hybrid Stress Quadrilateral Element for Free Vibration and Buckling Analyses of Reissner-Mindlin Plates vol.2017, 2017, https://doi.org/10.1155/2017/6492081
  3. A reconstructed edge-based smoothed DSG element based on global coordinates for analysis of Reissner–Mindlin plates vol.33, pp.1, 2017, https://doi.org/10.1007/s10409-016-0607-x
  4. High-order quasi-conforming triangular Reissner-Mindlin plate element pp.0264-4401, 2018, https://doi.org/10.1108/EC-11-2017-0446
  5. Novel techniques for improving the interpolation functions of Euler-Bernoulli beam vol.63, pp.1, 2015, https://doi.org/10.12989/sem.2017.63.1.011