Acknowledgement
Supported by : Korea Institute of Energy Technology Evaluation and Planning(KETEP), National Research Foundation (NRF) of Korea
References
- Adeli, H. and Kim, H. (2004), "Wavelet-hybrid feedback-least mean square algorithm for robust control of structures", J. Struct. Eng. - ASCE, 130(1), 128-137. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:1(128)
- Avci, E. and Turkoglu, I. (2009), "An intelligent diagnosis system based on principal component analysis and ANFIS for the hearth valve diseases", Expert Syst. Appl., 36(2), 2873-2878. https://doi.org/10.1016/j.eswa.2008.01.030
- Bani-Hani, K., Ghaboussi, J. and Schneider, S.P. (1999), "Experimental study of identification and control of structures using neural network Part 1: identification", Earthq. Eng. Struct. D., 28(9), 995-1018. https://doi.org/10.1002/(SICI)1096-9845(199909)28:9<995::AID-EQE851>3.0.CO;2-8
- Chen, Y., Yang, B., Abraham, A. and Peng, L. (2007), "Automatic design of hierarchical Takagi-Sugeno type fuzzy systems using evolutionary algorithms", IEEE T. Fuzzy Syst., 15(3), 385-397. https://doi.org/10.1109/TFUZZ.2006.882472
- Chung, L.L., Lin, R.C., Song, T.T. and Reinhorn, A.M. (1989), "Experiments on active control for MDOF seismic structures", J. Eng. Mech. - ASCE, 115, 1609-1627. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:8(1609)
- Du, H. and Zhang, N. (2008), "Application of evolving Takagi-Sugeno fuzzy model to nonlinear system identification", Appl. Soft Comput., 8(1), 676-686. https://doi.org/10.1016/j.asoc.2007.05.006
- Dyke, S.J., Spencer, B.F. Jr., Sain, M.K. and Carlson, J.D. (1996), "Modeling and control of magnetorheological dampers for seismic response reduction", Smart Mater. Struct., 5(5), 565-575. https://doi.org/10.1088/0964-1726/5/5/006
- Dyke, S.J., Spencer, B.F. Jr., Sain, M.K. and Carlson, J.D. (1998), "An experimental study of MR dampers for seismic protection", Smart Mater. Struct., 7(5), 693-703. https://doi.org/10.1088/0964-1726/7/5/012
- Filev, D.P. (1991), "Fuzzy modeling of complex systems", Int. J. Approx. Reason., 5(3), 281-290. https://doi.org/10.1016/0888-613X(91)90013-C
- Gopalakrishnan, K. and Khaitan, S.K. (2010), "Finite element based adaptive neuro-fuzzy inference technique for parameter identification of multi-layered transportation structures", Transport (Taylor & Francis), 25(1), 58-65. https://doi.org/10.3846/transport.2010.08
- Gu, Z. and Oyadiji, S. (2008), "Application of MR damper in structural control using ANFIS method", Comput. Struct., 86(3-5), 427-436. https://doi.org/10.1016/j.compstruc.2007.02.024
- Hakim, S.J.S. and Abdul Razak, H. (2013), "Adaptive neuro fuzzy inference system (ANFIS) and artificial neural networks (ANNs) for structural damage identification", Struct. Eng. Mech., 45(6), 779-802. https://doi.org/10.12989/sem.2013.45.6.779
- Housner, G., Bergman, L., Caughey, T., Chassiakos, A., Claus, R., Masri, S., Skelton, R., Soong, T., Spencer, B.F. Jr. and Yao, J. (1997), "Structural control: past, present, and the future", J. Eng. Mech. - ASCE, 123(9), 897-971. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:9(897)
- Hung, S.L., Huang, C.S., Wen, C.M. and Hsu, Y.C. (2003), "Nonparametric identification of a building structure from experimental data using wavelet neural network", Comput.-Aided Civil Infrastruct. Eng., 18(5), 356-368. https://doi.org/10.1111/1467-8667.t01-1-00313
- Hurlebaus, S. and Gaul, L. (2006), "Smart structure eynamics", Mech. Syst. Signal Pr., 20(2), 255-281. https://doi.org/10.1016/j.ymssp.2005.08.025
- Jalili-Kharaajoo, M. (2004), "Nonlinear system identification using ANFIS based on emotional learning", Lecture notes in computer science, 3315, 697-707.
- Jang, J.S.R. (1993), "ANFIS: adaptive-network-based fuzzy inference system", IEEE T. Syst. Man. CY. B., 23(3), 665-685. https://doi.org/10.1109/21.256541
- Jang, J.S.R., Sun, C.T. and Mizutani, E. (1997), Neuro-Fuzzy and Soft Computing, Prentice Hall, Upper Saddle River, New Jersey, USA.
- Johansen, T.A. and Babuska, R. (2003), "Multiobjective identification of Takagi-Sugeno fuzzy models", IEEE T. Fuzzy Syst., 11(6), 847-860. https://doi.org/10.1109/TFUZZ.2003.819824
- Johansen, T.A. (1994), "Fuzzy model based control: stability, robustness, and performance issues", IEEE T. Fuzzy Syst., 2(3), 221-234. https://doi.org/10.1109/91.298450
- Jollife, I.T. (2002), Principal component analysis, 2nd Ed., New York, Springer, Print.
- Kim, Y., Hurlebaus, S. and Langari, R. (2011), "MIMO fuzzy identification of building-MR damper system", J. Intell. Fuzzy Syst., 22(4), 185-205.
- Kim, Y., Hurlebaus, S., Sharifi, R. and Langari, R. (2009), "Nonlinear identification of MIMO smart structures", Proceedings of the ASME Dynamic Systems and Control Conference, Oct. 12-14, Hollywood, California.
- Kim, Y. and Langari, R. (2007), "Nonlinear identification and control of a building structure with a magnetorheological damper system", Proceedings of the American Control Conference, July 11-13, New York.
- Kim, Y., Langari, R. and Hurlebaus, S. (2009), "Semiactive nonlinear control of a building with a magnetorheological damper system", Mech. Syst. Signal Pr., 23(2), 300-315. https://doi.org/10.1016/j.ymssp.2008.06.006
- Kuzniar, K. and Waszczyszyn, Z. (2006), "Neural networks and principal component analysis for identification of building natural periods", J. Comput. Civil Eng., 20(6), 431-436. https://doi.org/10.1061/(ASCE)0887-3801(2006)20:6(431)
- Langari, R. (1999), "Past, present and future of fuzzy control: a case for application of fuzzy logic in hierarchical control", Proceedings of the 18th International Conference of the North American Fuzzy Information Processing Society-NAFIPS, New York City, New York, USA.
- Lin, J.W. and Betti, R. (2004), "On-line identification and damage detection in non-linear structural systems using a variable forgetting factor approach", Earthq. Eng. Struct. D., 33(4), 419-444. https://doi.org/10.1002/eqe.350
- Mujica, L.E., Rodellar, J., Fernandez, A. and Guemes, A. (2010), "Q-statistic and T2-statistic PCA-based measures for damage assessment in structures", Struct. Health Monit., 10(5), 539-553.
- Ozbulut, O.E., Mir, C., Moroni, M.O., Sarrazin, M. and Roschke, P.N. (2007), "A fuzzy model of superelastic shape memory alloys for vibration control in civil engineering applications", Smart Mater. Struct., 16(3), 818-829. https://doi.org/10.1088/0964-1726/16/3/031
- Palau, C.V., Arregui, F.J. and Carlos, M. (2012), "Burst detection in water networks using principal component analysis", J. Water Resource Planning and Management, 138(1), 47-54. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000147
- Park, S., Lee, J., Yun, C. and Inman, D. (2007), "Electro-mechanical impedance-based wireless structural health monitoring using PCA-data compression and k-means clustering algorithms", J. Intel. Mat. Syst. Str., 19(4), 509-520. https://doi.org/10.1177/1045389X07077400
- Pearson, K. (1901), "On lines and planes of closest fit to systems of points in space", Philos. Magazine, 2(6), 559-572. https://doi.org/10.1080/14786440109462720
- Polat, K. and Gunes, S. (2007), "Automatic determination of diseases related to lymph system from lymphography data using principal component analysis (PCA), fuzzy weighting pre-processing and ANFIS", Expert Syst. Appl., 33(3), 636-641. https://doi.org/10.1016/j.eswa.2006.06.004
- Ramallo, J.C., Yoshioka, H. and Spencer, B.F. Jr. (2004), "A two-step identification technique for semiactive control systems", Struct. Control Health Monit., 11(4), 273-289. https://doi.org/10.1002/stc.43
- Schurter, K.C. and Roschke, P. (2000), "Fuzzy modeling of magnetorheological damper using ANFIS", Proceedings of the 9th IEEE International Conference on Fuzzy Systems, May.
- Schurter, K.C. and Roschke, P. (2001), "Neuro-fuzzy control of structures using acceleration feedback", Smart Mater. Struct., 10, 770-779. https://doi.org/10.1088/0964-1726/10/4/322
- Sharifi, R., Kim, Y. and Langari, R. (2010), "Sensor fault isolation and detection of smart structures", Smart Mater. Struct., 19(10), 5001-5016.
- Smyth, A.W., Masri, S.F., Chassiakos, A.G. and Caughey, T.K. (1999), "On-line parametric identification of MDOF nonlinear hysteretic systems", J. Eng. Mech. - ASCE, 125(2), 133-142. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:2(133)
- Spencer, B.F. Jr., Dyke, S.J., Sain, M.K. and Carlson, J.D. (1997), "Phenomenological model for magnetorheological dampers", J. Eng. Mech. - ASCE, 123(3), 230-238. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:3(230)
- Takagi, T. and Sugeno, M. (1985), "Fuzzy identification of systems and its applications to modeling and control", IEEE T. Syst. Man. CY. B., 15(1), 116-132.
- Wang, L. and Fu, K. (2009), Artificial Neural Networks, Wiley Encyclopedia of Computer Science and Engineering.
- Wang, H. and Haiyan, H. (2009), "Hierarchical fuzzy identification of MR damper", Proceedings of the SPIE 7493, 2nd International Conference on Smart Materials and Nanotechnology in Engineering, Oct. 2009, Weihai, China.
- Wang, L. and Langari, R. (1995), "Decomposition approach for fuzzy systems identification", Proceedings of the 34th IEEE Conference on Decision and Control, New Orleans, LA, USA.
- Warne, K., Prasad, G., Siddique, N.H. and Maguire, L.P. (2004), "Development of a hybrid PCA-ANFIS measurement system for monitoring product quality in the coating industry", Proceedings of the Systems, Man and Cybernetics, IEEE international Conference, Deny, UK, Oct.
- Yager, R.R. and Filev, D.P. (1993), "Unified structure and parameter identification of fuzzy models", IEEE T. Syst. Man. CY. B., 23(4), 1198-1205. https://doi.org/10.1109/21.247902
- Yan, G. and Zhou, L.L. (2006), "Integrated fuzzy logic and genetic algorithms for multi-objective control of structures using MR dampers", J. Sound Vib., 296(1-2), 368-382. https://doi.org/10.1016/j.jsv.2006.03.011
- Yang, G., Spencer, B.F. Jr., Carlson, J.D. and Sain, M.K. (2002), "Large-scale MR fluid dampers: modeling and dynamic performance considerations", Eng. Struct., 24(3), 309-323. https://doi.org/10.1016/S0141-0296(01)00097-9
- Yang, Y.N. and Lin, S. (2004), "On-line identification of non-linear hysteretic structures using an adaptive tracking technique", Int. J. Nonlinear Mech., 39(9), 1481-1491. https://doi.org/10.1016/j.ijnonlinmec.2004.02.010
- Yang, Y.N. and Lin, S. (2005), "Identification of parametric variations of structures based on least squares estimation and adaptive tracking technique", J. Eng. Mech. - ASCE, 131(3), 290-298. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:3(290)
- Yang, Y.N., Akbrapour, A. and Ghaemmaghami, P. (1987), "New optimal control algorithms for structural control", J. Eng. Mech. - ASCE, 113, 1369-1386. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:9(1369)
- Yan, J. and Langari, R. (1998), Fuzzy Logic-Intelligence, Control, and Information, Prentice Hall, Upper Saddle River, New Jersey, USA.
- Zadeh, L.A. (1965), "Fuzzy Sets", Inform. Control, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
Cited by
- Active control of highway bridges subject to a variety of earthquake loads vol.14, pp.2, 2015, https://doi.org/10.1007/s11803-015-0021-6
- Fast classification of fibres for concrete based on multivariate statistics vol.20, pp.1, 2015, https://doi.org/10.12989/cac.2017.20.1.023