DOI QR코드

DOI QR Code

PCA-based neuro-fuzzy model for system identification of smart structures

  • Mohammadzadeh, Soroush (Department of Civil and Environmental Engineering, Worcester Polytechnic Institute) ;
  • Kim, Yeesock (Department of Civil and Environmental Engineering, Worcester Polytechnic Institute) ;
  • Ahn, Jaehun (School of Civil and Environmental Engineering, Pusan National University)
  • Received : 2013.05.09
  • Accepted : 2014.12.16
  • Published : 2015.04.25

Abstract

This paper proposes an efficient system identification method for modeling nonlinear behavior of civil structures. This method is developed by integrating three different methodologies: principal component analysis (PCA), artificial neural networks, and fuzzy logic theory, hence named PANFIS (PCA-based adaptive neuro-fuzzy inference system). To evaluate this model, a 3-story building equipped with a magnetorheological (MR) damper subjected to a variety of earthquakes is investigated. To train the input-output function of the PANFIS model, an artificial earthquake is generated that contains a variety of characteristics of recorded earthquakes. The trained model is also validated using the1940 El-Centro, Kobe, Northridge, and Hachinohe earthquakes. The adaptive neuro-fuzzy inference system (ANFIS) is used as a baseline. It is demonstrated from the training and validation processes that the proposed PANFIS model is effective in modeling complex behavior of the smart building. It is also shown that the proposed PANFIS produces similar performance with the benchmark ANFIS model with significant reduction of computational loads.

Keywords

Acknowledgement

Supported by : Korea Institute of Energy Technology Evaluation and Planning(KETEP), National Research Foundation (NRF) of Korea

References

  1. Adeli, H. and Kim, H. (2004), "Wavelet-hybrid feedback-least mean square algorithm for robust control of structures", J. Struct. Eng. - ASCE, 130(1), 128-137. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:1(128)
  2. Avci, E. and Turkoglu, I. (2009), "An intelligent diagnosis system based on principal component analysis and ANFIS for the hearth valve diseases", Expert Syst. Appl., 36(2), 2873-2878. https://doi.org/10.1016/j.eswa.2008.01.030
  3. Bani-Hani, K., Ghaboussi, J. and Schneider, S.P. (1999), "Experimental study of identification and control of structures using neural network Part 1: identification", Earthq. Eng. Struct. D., 28(9), 995-1018. https://doi.org/10.1002/(SICI)1096-9845(199909)28:9<995::AID-EQE851>3.0.CO;2-8
  4. Chen, Y., Yang, B., Abraham, A. and Peng, L. (2007), "Automatic design of hierarchical Takagi-Sugeno type fuzzy systems using evolutionary algorithms", IEEE T. Fuzzy Syst., 15(3), 385-397. https://doi.org/10.1109/TFUZZ.2006.882472
  5. Chung, L.L., Lin, R.C., Song, T.T. and Reinhorn, A.M. (1989), "Experiments on active control for MDOF seismic structures", J. Eng. Mech. - ASCE, 115, 1609-1627. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:8(1609)
  6. Du, H. and Zhang, N. (2008), "Application of evolving Takagi-Sugeno fuzzy model to nonlinear system identification", Appl. Soft Comput., 8(1), 676-686. https://doi.org/10.1016/j.asoc.2007.05.006
  7. Dyke, S.J., Spencer, B.F. Jr., Sain, M.K. and Carlson, J.D. (1996), "Modeling and control of magnetorheological dampers for seismic response reduction", Smart Mater. Struct., 5(5), 565-575. https://doi.org/10.1088/0964-1726/5/5/006
  8. Dyke, S.J., Spencer, B.F. Jr., Sain, M.K. and Carlson, J.D. (1998), "An experimental study of MR dampers for seismic protection", Smart Mater. Struct., 7(5), 693-703. https://doi.org/10.1088/0964-1726/7/5/012
  9. Filev, D.P. (1991), "Fuzzy modeling of complex systems", Int. J. Approx. Reason., 5(3), 281-290. https://doi.org/10.1016/0888-613X(91)90013-C
  10. Gopalakrishnan, K. and Khaitan, S.K. (2010), "Finite element based adaptive neuro-fuzzy inference technique for parameter identification of multi-layered transportation structures", Transport (Taylor & Francis), 25(1), 58-65. https://doi.org/10.3846/transport.2010.08
  11. Gu, Z. and Oyadiji, S. (2008), "Application of MR damper in structural control using ANFIS method", Comput. Struct., 86(3-5), 427-436. https://doi.org/10.1016/j.compstruc.2007.02.024
  12. Hakim, S.J.S. and Abdul Razak, H. (2013), "Adaptive neuro fuzzy inference system (ANFIS) and artificial neural networks (ANNs) for structural damage identification", Struct. Eng. Mech., 45(6), 779-802. https://doi.org/10.12989/sem.2013.45.6.779
  13. Housner, G., Bergman, L., Caughey, T., Chassiakos, A., Claus, R., Masri, S., Skelton, R., Soong, T., Spencer, B.F. Jr. and Yao, J. (1997), "Structural control: past, present, and the future", J. Eng. Mech. - ASCE, 123(9), 897-971. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:9(897)
  14. Hung, S.L., Huang, C.S., Wen, C.M. and Hsu, Y.C. (2003), "Nonparametric identification of a building structure from experimental data using wavelet neural network", Comput.-Aided Civil Infrastruct. Eng., 18(5), 356-368. https://doi.org/10.1111/1467-8667.t01-1-00313
  15. Hurlebaus, S. and Gaul, L. (2006), "Smart structure eynamics", Mech. Syst. Signal Pr., 20(2), 255-281. https://doi.org/10.1016/j.ymssp.2005.08.025
  16. Jalili-Kharaajoo, M. (2004), "Nonlinear system identification using ANFIS based on emotional learning", Lecture notes in computer science, 3315, 697-707.
  17. Jang, J.S.R. (1993), "ANFIS: adaptive-network-based fuzzy inference system", IEEE T. Syst. Man. CY. B., 23(3), 665-685. https://doi.org/10.1109/21.256541
  18. Jang, J.S.R., Sun, C.T. and Mizutani, E. (1997), Neuro-Fuzzy and Soft Computing, Prentice Hall, Upper Saddle River, New Jersey, USA.
  19. Johansen, T.A. and Babuska, R. (2003), "Multiobjective identification of Takagi-Sugeno fuzzy models", IEEE T. Fuzzy Syst., 11(6), 847-860. https://doi.org/10.1109/TFUZZ.2003.819824
  20. Johansen, T.A. (1994), "Fuzzy model based control: stability, robustness, and performance issues", IEEE T. Fuzzy Syst., 2(3), 221-234. https://doi.org/10.1109/91.298450
  21. Jollife, I.T. (2002), Principal component analysis, 2nd Ed., New York, Springer, Print.
  22. Kim, Y., Hurlebaus, S. and Langari, R. (2011), "MIMO fuzzy identification of building-MR damper system", J. Intell. Fuzzy Syst., 22(4), 185-205.
  23. Kim, Y., Hurlebaus, S., Sharifi, R. and Langari, R. (2009), "Nonlinear identification of MIMO smart structures", Proceedings of the ASME Dynamic Systems and Control Conference, Oct. 12-14, Hollywood, California.
  24. Kim, Y. and Langari, R. (2007), "Nonlinear identification and control of a building structure with a magnetorheological damper system", Proceedings of the American Control Conference, July 11-13, New York.
  25. Kim, Y., Langari, R. and Hurlebaus, S. (2009), "Semiactive nonlinear control of a building with a magnetorheological damper system", Mech. Syst. Signal Pr., 23(2), 300-315. https://doi.org/10.1016/j.ymssp.2008.06.006
  26. Kuzniar, K. and Waszczyszyn, Z. (2006), "Neural networks and principal component analysis for identification of building natural periods", J. Comput. Civil Eng., 20(6), 431-436. https://doi.org/10.1061/(ASCE)0887-3801(2006)20:6(431)
  27. Langari, R. (1999), "Past, present and future of fuzzy control: a case for application of fuzzy logic in hierarchical control", Proceedings of the 18th International Conference of the North American Fuzzy Information Processing Society-NAFIPS, New York City, New York, USA.
  28. Lin, J.W. and Betti, R. (2004), "On-line identification and damage detection in non-linear structural systems using a variable forgetting factor approach", Earthq. Eng. Struct. D., 33(4), 419-444. https://doi.org/10.1002/eqe.350
  29. Mujica, L.E., Rodellar, J., Fernandez, A. and Guemes, A. (2010), "Q-statistic and T2-statistic PCA-based measures for damage assessment in structures", Struct. Health Monit., 10(5), 539-553.
  30. Ozbulut, O.E., Mir, C., Moroni, M.O., Sarrazin, M. and Roschke, P.N. (2007), "A fuzzy model of superelastic shape memory alloys for vibration control in civil engineering applications", Smart Mater. Struct., 16(3), 818-829. https://doi.org/10.1088/0964-1726/16/3/031
  31. Palau, C.V., Arregui, F.J. and Carlos, M. (2012), "Burst detection in water networks using principal component analysis", J. Water Resource Planning and Management, 138(1), 47-54. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000147
  32. Park, S., Lee, J., Yun, C. and Inman, D. (2007), "Electro-mechanical impedance-based wireless structural health monitoring using PCA-data compression and k-means clustering algorithms", J. Intel. Mat. Syst. Str., 19(4), 509-520. https://doi.org/10.1177/1045389X07077400
  33. Pearson, K. (1901), "On lines and planes of closest fit to systems of points in space", Philos. Magazine, 2(6), 559-572. https://doi.org/10.1080/14786440109462720
  34. Polat, K. and Gunes, S. (2007), "Automatic determination of diseases related to lymph system from lymphography data using principal component analysis (PCA), fuzzy weighting pre-processing and ANFIS", Expert Syst. Appl., 33(3), 636-641. https://doi.org/10.1016/j.eswa.2006.06.004
  35. Ramallo, J.C., Yoshioka, H. and Spencer, B.F. Jr. (2004), "A two-step identification technique for semiactive control systems", Struct. Control Health Monit., 11(4), 273-289. https://doi.org/10.1002/stc.43
  36. Schurter, K.C. and Roschke, P. (2000), "Fuzzy modeling of magnetorheological damper using ANFIS", Proceedings of the 9th IEEE International Conference on Fuzzy Systems, May.
  37. Schurter, K.C. and Roschke, P. (2001), "Neuro-fuzzy control of structures using acceleration feedback", Smart Mater. Struct., 10, 770-779. https://doi.org/10.1088/0964-1726/10/4/322
  38. Sharifi, R., Kim, Y. and Langari, R. (2010), "Sensor fault isolation and detection of smart structures", Smart Mater. Struct., 19(10), 5001-5016.
  39. Smyth, A.W., Masri, S.F., Chassiakos, A.G. and Caughey, T.K. (1999), "On-line parametric identification of MDOF nonlinear hysteretic systems", J. Eng. Mech. - ASCE, 125(2), 133-142. https://doi.org/10.1061/(ASCE)0733-9399(1999)125:2(133)
  40. Spencer, B.F. Jr., Dyke, S.J., Sain, M.K. and Carlson, J.D. (1997), "Phenomenological model for magnetorheological dampers", J. Eng. Mech. - ASCE, 123(3), 230-238. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:3(230)
  41. Takagi, T. and Sugeno, M. (1985), "Fuzzy identification of systems and its applications to modeling and control", IEEE T. Syst. Man. CY. B., 15(1), 116-132.
  42. Wang, L. and Fu, K. (2009), Artificial Neural Networks, Wiley Encyclopedia of Computer Science and Engineering.
  43. Wang, H. and Haiyan, H. (2009), "Hierarchical fuzzy identification of MR damper", Proceedings of the SPIE 7493, 2nd International Conference on Smart Materials and Nanotechnology in Engineering, Oct. 2009, Weihai, China.
  44. Wang, L. and Langari, R. (1995), "Decomposition approach for fuzzy systems identification", Proceedings of the 34th IEEE Conference on Decision and Control, New Orleans, LA, USA.
  45. Warne, K., Prasad, G., Siddique, N.H. and Maguire, L.P. (2004), "Development of a hybrid PCA-ANFIS measurement system for monitoring product quality in the coating industry", Proceedings of the Systems, Man and Cybernetics, IEEE international Conference, Deny, UK, Oct.
  46. Yager, R.R. and Filev, D.P. (1993), "Unified structure and parameter identification of fuzzy models", IEEE T. Syst. Man. CY. B., 23(4), 1198-1205. https://doi.org/10.1109/21.247902
  47. Yan, G. and Zhou, L.L. (2006), "Integrated fuzzy logic and genetic algorithms for multi-objective control of structures using MR dampers", J. Sound Vib., 296(1-2), 368-382. https://doi.org/10.1016/j.jsv.2006.03.011
  48. Yang, G., Spencer, B.F. Jr., Carlson, J.D. and Sain, M.K. (2002), "Large-scale MR fluid dampers: modeling and dynamic performance considerations", Eng. Struct., 24(3), 309-323. https://doi.org/10.1016/S0141-0296(01)00097-9
  49. Yang, Y.N. and Lin, S. (2004), "On-line identification of non-linear hysteretic structures using an adaptive tracking technique", Int. J. Nonlinear Mech., 39(9), 1481-1491. https://doi.org/10.1016/j.ijnonlinmec.2004.02.010
  50. Yang, Y.N. and Lin, S. (2005), "Identification of parametric variations of structures based on least squares estimation and adaptive tracking technique", J. Eng. Mech. - ASCE, 131(3), 290-298. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:3(290)
  51. Yang, Y.N., Akbrapour, A. and Ghaemmaghami, P. (1987), "New optimal control algorithms for structural control", J. Eng. Mech. - ASCE, 113, 1369-1386. https://doi.org/10.1061/(ASCE)0733-9399(1987)113:9(1369)
  52. Yan, J. and Langari, R. (1998), Fuzzy Logic-Intelligence, Control, and Information, Prentice Hall, Upper Saddle River, New Jersey, USA.
  53. Zadeh, L.A. (1965), "Fuzzy Sets", Inform. Control, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X

Cited by

  1. Active control of highway bridges subject to a variety of earthquake loads vol.14, pp.2, 2015, https://doi.org/10.1007/s11803-015-0021-6
  2. Fast classification of fibres for concrete based on multivariate statistics vol.20, pp.1, 2015, https://doi.org/10.12989/cac.2017.20.1.023