참고문헌
- Ahn, K.K., Truong, D.Q. and Islam, M.A. (2009), "Modeling of a magneto-rheological (MR) fluid damper using a self tuning fuzzy mechanism", J. Mech. Sci. Technol., 23(5), 1485-1499. https://doi.org/10.1007/s12206-009-0359-7
- Boada, M.J.L., Calvo, J.A., Boada, B.L. and Diaz, V. (2011), "Modeling of a magnetorheological damper by recursive lazy learning", Int. J. Nonlinear Mech., 46(3), 479-485. https://doi.org/10.1016/j.ijnonlinmec.2008.11.019
- Boston, C., Weber, F. and Guzzella, L. (2010), "Modeling of a disc-type magnetorheological damper", Smart Mater. Struct., 19(4), 045005. https://doi.org/10.1088/0964-1726/19/4/045005
- Cao, M., Wang, K.W. and Lee, K.Y. (2008), "Scalable and invertible PMNN model for magneto-rheological fluid dampers", J. Vib. Control, 14(5), 731-751. https://doi.org/10.1177/1077546307083988
- Carlson, J.D., Catanzarite, D.M. and Clair, K.A.St. (1996), "Commercial magneto-rheological fluid devices", Int. J. Modern Phys. B, 10(23-24), 2857-2865. https://doi.org/10.1142/S0217979296001306
- Chang, C.C. and Roschke, P.N. (1998), "Neural network modeling of a magnetorheological damper", J. Intel. Mater. Syst. Struct., 9(9), 755-764. https://doi.org/10.1177/1045389X9800900908
- Chen, S., Billings, S.A., Cowan, C.F. and Grant, P.M. (1990), "Practical identification of NARMAX models using radial basis functions", Int. J. Control, 52(6), 1327-1350. https://doi.org/10.1080/00207179008953599
- Chen, Z.Q., Wang, X.Y., Ko, J.M., Ni, Y.Q., Spencer, B.F., Yang, G. and Hu, J.H. (2004), "MR damping system for mitigating wind-rain induced vibration on Dongting Lake Cable-Stayed Bridge", Wind Struct., 7(5), 293-304. https://doi.org/10.12989/was.2004.7.5.293
- Choi, S.B., Seong, M.S. and Ha, S.H. (2009), "Vibration control of an MR vehicle suspension system considering both hysteretic behavior and parameter variation", Smart Mater. Struct., 18(12), 125010. https://doi.org/10.1088/0964-1726/18/12/125010
- Duan, Y.F., Ni, Y.Q. and Ko, J.M. (2005), "State-derivative feedback control of cable vibration using semiactive magnetorheological dampers", Comput. - Aided Civil Infrastruct. Eng., 20(6), 431-449. https://doi.org/10.1111/j.1467-8667.2005.00396.x
- Dyke, S.J., Spencer, B.F. Jr., Sain, M.K. and Carlson, J.D. (1996), "Modeling and control of magnetorheological dampers for seismic response reduction", Smart Mater. Struct., 5(5), 565-575. https://doi.org/10.1088/0964-1726/5/5/006
- Foresee, F.D. and Hagan, M.T. (1997), "Gauss-Newton approximation to Bayesian learning", Proceedings of the 1997 IEEE International Joint Conference on Neural Networks, Houston, USA, June.
- Fujitani, H., Sodeyama, H., Tomura, T., Hiwatashi, T., Shiozaki, Y., Hata, K., Sunakoda, K., Morishita, S. and Soda, S. (2003), "Development of 400kN magnetorheological damper for a real base-isolated building", Proceedings of the SPIE, Smart Structures and Materials 2003: Damping and Isolation, (Eds., G.S. Agnes and K.W. Wang), San Diego, CA, USA, March.
- Gandhi, F., Wang, K.W. and Xia, L. (2001), "Magnetorheological fluid damper feedback linearization control for helicopter rotor application", Smart Mater. Struct., 10(1), 96-103. https://doi.org/10.1088/0964-1726/10/1/309
- Gordaninejad, F., Saiidi, M., Hansen, B.C., Ericksen, E.O. and Chang, F.-K. (2002), "Magneto-rheological fluid dampers for control of bridges", J. Intel. Mat. Syst. Str., 13(2-3), 167-180. https://doi.org/10.1177/104538902761402567
- Hagan, M.T. and Menhaj, M.B. (1994), "Training feedforward networks with the Marquardt algorithm", IEEE T. Neural Networ., 5(6), 989-993. https://doi.org/10.1109/72.329697
- Hornik, K., Stinchcombe, M. and White, H. (1989), "Multilayer feedforward networks are universal approximators", Neural Networks, 2(5), 359-366. https://doi.org/10.1016/0893-6080(89)90020-8
- Hu, W. and Wereley, N.M. (2008), "Hybrid magnetorheological fluid-elastomeric lag dampers for helicopter stability augmentation", Smart Mater. Struct., 17(4), 045021. https://doi.org/10.1088/0964-1726/17/4/045021
- Ikhouane, F. and Dyke, S.J. (2007), "Modeling and identification of a shear mode magnetorheological damper", Smart Mater. Struct., 16(3), 605-616. https://doi.org/10.1088/0964-1726/16/3/007
- Jimenez, R. and Alvarez-Icaza, L. (2005), "LuGre friction model for a magnetorheological damper", Struct. Control Health Monit., 12(1), 91-116. https://doi.org/10.1002/stc.58
- Jin, G., Sain, M.K. and Spencer, B.F. Jr. (2005), "Nonlinear blackbox modeling of MR-dampers for civil structural control", IEEE T. Contr. Sys. T., 13(3), 345-355. https://doi.org/10.1109/TCST.2004.841645
- Johnson, E.A., Baker, G.A., Spencer, B.F. Jr. and Fujino, Y. (2000), "Mitigating stay cable oscillation using semiactive damping", Proceedings of the SPIE, Smart Structures and Materials 2000: Smart Systems for Bridges, Structures, and Highways, S.-C. Liu (ed.), Newport Beach, USA, March.
- Jung, H.J., Spencer, B.F. Jr. and Lee, I.W. (2003), "Control of seismically excited cable-stayed bridge employing magnetorheological fluid dampers", J. Struct. Eng. - ASCE, 129(7), 873-883. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(873)
- Jung, H.J., Spencer, B.F. Jr., Ni, Y.Q. and Lee, I.W. (2004), "State-of-the-art of semiactive control systems using MR fluid dampers in civil engineering applications", Struct. Eng. Mech., 17(3), 493-526. https://doi.org/10.12989/sem.2004.17.3_4.493
- Karimi, H.R., Zapateiro, M. and Luo, N. (2009), "Wavelet-based parameter identification of a nonlinear magnetorheological damper", Int. J. Wavelets Multi., 7(2), 183-198. https://doi.org/10.1142/S0219691309002842
- Ko, J.M., Ni, Y.Q., Chen, Z.Q. and Spencer, B.F. Jr. (2002), "Implementation of magneto-rheological dampers to Dongting Lake Bridge for cable vibration mitigation", Proceedings of the 3rd World Conference on Structural Control, F. Casciati (ed.), Como, Italy, April.
- Leva, A. and Piroddi, L. (2002), "NARX-based technique for the modelling of magneto-rheological damping devices", Smart Mater. Struct., 11(1), 79-88. https://doi.org/10.1088/0964-1726/11/1/309
- Li, H., Liu, M., Li, J., Guan, X. and Ou, J. (2007), "Vibration control of stay cables of the Shandong Binzhou Yellow River Highway Bridge using magnetorheological fluid dampers", J. Bridge Eng., 12(4), 401-409. https://doi.org/10.1061/(ASCE)1084-0702(2007)12:4(401)
- Liao, W.H. and Wang, D.H. (2003), "Semiactive vibration control of train suspension systems via magnetorheological dampers", J. Intel. Mat. Syst. Str., 14(3), 161-172. https://doi.org/10.1177/1045389X03014003004
- Loh, C.H., Lynch, J.P., Lu, K.C. and Wang, Y. (2007), "Experimental verification of a wireless sensing and control system for structural control using MR dampers", Earthq. Eng. Struct. D., 36(10), 1303-1328. https://doi.org/10.1002/eqe.682
- MacKay, D.J.C. (1992), "A practical Bayesian framework for backprop networks", Neural Comput., 4(3), 448-472. https://doi.org/10.1162/neco.1992.4.3.448
- Ni, Y.Q., Ying, Z.G., Wang, J.Y., Ko, J.M. and Spencer, B.F. Jr. (2004), "Stochastic optimal control of wind-excited tall buildings using semi-active MR-TLCDs", Probabilist. Eng. Mech., 19(3), 269-277. https://doi.org/10.1016/j.probengmech.2004.02.010
- Or, S.W., Duan, Y.F., Ni, Y.Q., Chen, Z.H. and Lam, K.H. (2008), "Development of magnetorheological dampers with embedded piezoelectric sensors for structural vibration control", J. Intel. Mat. Syst. Str., 19(11), 1327-1338. https://doi.org/10.1177/1045389X07085673
- Pang, L., Kamath, G.M. and Wereley, N.M. (1998), "Analysis and testing of a linear stroke magnetorheological damper", Proceedings of the AIAA/ASME/AHS Adaptive Structures Forum, Long Beach, CA, April.
- Schurter, K.C. and Roschke, P.N. (2000), "Fuzzy modeling of a magnetorheological damper using ANFIS", Proceedings of the 9th IEEE International Conference on Fuzzy Systems, San Antonio, USA, May.
- Sjoberg, J. and Ljung, L. (1995), "Overtraining, regularization and searching for minimum, with application to neural networks", Int. J. Control, 62(6), 1391-1407. https://doi.org/10.1080/00207179508921605
- Song, X., Ahmadian, M., Southward, S. and Miller, L.R. (2005), "An adaptive semiactive control algorithm for magnetorheological suspension systems", J. Vib. Acoust., 127(5), 493-502. https://doi.org/10.1115/1.2013295
- Spencer, B.F. Jr., Dyke, S.J., Sain, M.K. and Carlson, J.D. (1997), "Phenomenological model for magnetorheological dampers", J. Eng. Mech.- ASCE, 123(3), 230-238. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:3(230)
- Suykens, J.A.K., Vandewalle, J.P.L. and De Moor, B.L.R. (1996), Artificial Neural Networks for Modeling and Control of Non-linear Systems, Kluwer Academic Publishers, Boston, USA.
- Wang, D.H. and Liao, W.H. (2005), "Modeling and control of magnetorheological fluid dampers using neural networks", Smart Mater. Struct., 14(1), 111-126. https://doi.org/10.1088/0964-1726/14/1/011
- Weber, F., Distl, H., Feltrin, G. and Motavalli, M. (2005a), "Evaluation procedure of decay measurements of a cable with passive-on operating MR damper", Proceedings of the 6th International Symposium on Cable Dynamics, Charleston, USA, September.
- Weber, F., Distl, H., Feltrin, G. and Motavalli, M. (2005b), "Simplified approach of velocity feedback for MR dampers on real cable-stayed bridges", Proceedings of the 6th International Symposium on Cable Dynamics, Charleston, USA, September.
- Ying, Z.G., Ni, Y.Q. and Ko, J.M. (2005), "Semi-active optimal control of linearized systems with multi-degree of freedom and application", J. Sound Vib., 279(1-2), 373-388. https://doi.org/10.1016/j.jsv.2003.11.004
피인용 문헌
- An experimental study on constructing MR secondary suspension for high-speed trains to improve lateral ride comfort vol.18, pp.1, 2016, https://doi.org/10.12989/sss.2016.18.1.053
- Adaptive Semiactive Cable Vibration Control: A Frequency Domain Perspective vol.2017, 2017, https://doi.org/10.1155/2017/2593503
- Self-Sensing Electromagnetic Transducer for Vibration Control of Space Antenna Reflector vol.22, pp.5, 2017, https://doi.org/10.1109/TMECH.2017.2712718
- Enhanced damping for bridge cables using a self-sensing MR damper vol.25, pp.8, 2016, https://doi.org/10.1088/0964-1726/25/8/085019
- Analog active valve control design for non-linear semi-active resetable devices vol.19, pp.5, 2015, https://doi.org/10.12989/sss.2017.19.5.487
- Ability of Energy Harvesting Mr Damper to Act as a Velocity Sensor in Vibration Control Systems vol.13, pp.2, 2015, https://doi.org/10.2478/ama-2019-0019
- Real-Time Sensing Action of the Electromagnetic Vibration-Based Energy Harvester for a Magnetorheological Damper Control vol.14, pp.10, 2015, https://doi.org/10.3390/en14102845
- Energy-Harvesting Adaptive Vibration Damping in High-Speed Train Suspension Using Electromagnetic Dampers vol.21, pp.14, 2015, https://doi.org/10.1142/s0219455421400022