DOI QR코드

DOI QR Code

The study on piezoelectric transducers: theoretical analysis and experimental verification

  • Sung, Chia-Chung (Department of Mechanical Engineering, National Cheng-Kung University) ;
  • Tien, Szu-Chi (Department of Mechanical Engineering, National Cheng-Kung University)
  • Received : 2013.04.03
  • Accepted : 2014.03.30
  • Published : 2015.04.25

Abstract

The main purpose of this research is to utilize simple mathematical models to depict the vibration behavior and the resulted sound field of a piezoelectric disk for ultrasonic transducers. Instead of using 1-D vibration model, coupled effect between the thickness and the radial motions was considered to be close to the real vibration behavior. Moreover, Huygens-Fresnel principle was used in both incident and reflected waves to analyze the sound field under obstacles in finite distance. Results of the tested piezoelectric disk show that, discrepancies between the simulation and experiment are 2.5% for resonant frequency and 12% for resulted sound field. Therefore, the proposed method can be used to reduce the complexity in modeling vibration problems, and increase the reliability on analyzing piezoeletric transducers in the design stage.

Keywords

References

  1. Auld, B.A. (1973), Acoustic Fields and Waves in Solids, Wiley, New York, NY, USA.
  2. Cheeke, J.D.N. (2002), Fundamentals and Applications of Ultrasonic Waves, CRC Press, Boca Raton, USA, chapter 6.
  3. Dehn, J.T. (1960), "Interference patterns in the near field of a circular piston", J. Acoust. Soc. Am., 32(12), 1692-1696. https://doi.org/10.1121/1.1907992
  4. Ding, D., Zhang, Y. and Liu, J. (2003), "Some extensions of the gaussian beam expansion: Radiation fields of the rectangular and the elliptical transducer", J. Acoust. Soc. Am., 6(113), 3043-3048.
  5. Griffice, C.P. and Seydel, J.A. (1981), "Spherical wave decomposition approach to ultrasonic field calculations", J. Nondestruct. Eval., 2 (3-4), 241-247. https://doi.org/10.1007/BF00570736
  6. Dugnani, R. (2009), "Dynamic behavior of structure-mounted disk-shape piezoelectric sensors including the adhesive layer", J. Intell. Mat. Syst. Str., 20 (13), 1553-1564. https://doi.org/10.1177/1045389X08101633
  7. Guo, N., Cawley, P. and Hitchings, D. (1992), "The finite element analysis of the vibration characteristics of piezoelectric discs", J. Sound Vib., 159, 115-138. https://doi.org/10.1016/0022-460X(92)90454-6
  8. Gutierrez, M.I., Calas, H., Ramos, A., Vera, A. and Leija, L. (2012), "Acoustic field modeling for physiotherapy ultrasound applicators by using approximated functions of measured non-uniform radiation distributions", Ultrasonics, 52 (6), 767-777. https://doi.org/10.1016/j.ultras.2012.02.006
  9. Huang, C.H., Lin, Y.C. and Ma, C.C. (2004), "Theoretical analysis and experimental measurement for resonant vibration of piezoceramic circular plates", IEEE T. Ultrason. Ferr., 51(1), 12-24. https://doi.org/10.1109/TUFFC.2004.1268463
  10. IEEE Standard (1987), IEEE Standard on Piezoelectricity, IEEE Standards Board, American National Standards Institute.
  11. Ikeda, T. (1990), Fundamentals of Piezoelectricity, Oxford University Press, Oxford, UK, chapter 2.
  12. Imamura, T. (1991), "Particle velocity and acoustic impedance density of the ultrasonic field by the circular flat transducers", J. Acoust. Soc. Jpn, 12(3), 115-122. https://doi.org/10.1250/ast.12.115
  13. Iula, A., Lamberti, N. and Pappalardo, M. (1998), "An approximated 3-d model of cylinder-shaped piezoceramic elements for transducer design", IEEE IEEE T. Ultrason. Ferr., 45 (4), 1056-1064. https://doi.org/10.1109/58.710588
  14. Kocbach, J. (2000), Finite element modeling of ultrasonic piezoelectric transducers, Ph.D. Dissertation, University of Bergen, Bergen, Norway.
  15. Kung, Y.S. and Fung, R.F. (2002), "Precision control of a piezoceramic actuator using neural networks", Proceedings of the 2002 28th Annual Conference of the IEEE Industrial Electronics Society, Sevilla, Spain, November.
  16. Kunkel, H.A., Locke, S. and Pikeroen, B. (1990), "Finite-element analysis of vibrational modes in piezoelectric ceramic disks", IEEE T. Ultrason. Ferr., 37 (4), 316-328. https://doi.org/10.1109/58.56492
  17. Lee, J.R., Park, C.Y. and Kong, C.W. (2013), "Simultaneous active strain and ultrasonic measurement using fiber acoustic wave piezoelectric transducers", Smart Struct. Syst., 11 (2), 185-197. https://doi.org/10.12989/sss.2013.11.2.185
  18. Lee, P.C.Y., Liu, N. and Ballato, A. (2004), "Thickness vibrations of a piezoelectric plate with dissipation", IEEE T. Ultrason. Ferr., 51(1), 52-62. https://doi.org/10.1109/TUFFC.2004.1268467
  19. Lin, S., Fu, Z., Zhang, X., Wang, Y. and Hu, J. (2013), "Radially sandwiched cylindrical piezoelectric transducer", Smart Mater. Struct., 22 (1), 1-10.
  20. Lin, S.Y. (1998), "Coupled vibration analysis of piezoelectric ceramic disk resonators", J. Sound Vib., 218(2), 205-217. https://doi.org/10.1006/jsvi.1998.1750
  21. Liu, J., Ono, K., Xu, J., Li, J. and Furukawa, M. (2012), "Thermal actuator for accurate positioning read/write element in hard disk drive", Microsyst. Technol., 18(9-10), 1583-1589. https://doi.org/10.1007/s00542-012-1595-9
  22. Martins, M., Correia, V., Cabral, J.M., Lanceros-Mendez, S. and Rocha, J.G. (2012), "Optimization of piezoelectric ultrasound emitter transducers for underwater communications", Sensor. Actuat. A - Phys., 184, 141-148. https://doi.org/10.1016/j.sna.2012.06.008
  23. Nowotny, H. and Benes, E. (1987), "General one-dimensional treatment of the layered piezoelectric resonator with two electrodes", J. Acoust. Soc. Am., 2(82), 513-521.
  24. Tiersten, H.F. (1963), "Thickness vibrations of piezoelectric plates", J. Acoust. Soc. Am., 35 (1), 53-58. https://doi.org/10.1121/1.1918413
  25. Wang, B.T. (1996), "Optimal placement of microphones and piezoelectric transducer actuators for far-field sound radiation control", J. Acoust. Soc. Am., 5(99), 2975-2984.
  26. Zenz, G., Berger, W., Gerstmayr, J., Nader, M. and Krommer, M. (2013), "Design of piezoelectric transducer arrays for passive and active modal control of thin plates", Smart Struct. Syst., 12 (5), 547-577. https://doi.org/10.12989/sss.2013.12.5.547

Cited by

  1. Sensitivity analysis of circumferential transducer array with T(0,1) mode of pipes vol.21, pp.6, 2015, https://doi.org/10.12989/sss.2018.21.6.761