DOI QR코드

DOI QR Code

Optimal placement of piezoelectric actuators and sensors on a smart beam and a smart plate using multi-objective genetic algorithm

  • Nestorovic, Tamara (Ruhr-Universitat Bochum, Mechanics of Adaptive Systems Universitatsstr) ;
  • Trajkov, Miroslav (Ruhr-Universitat Bochum, Mechanics of Adaptive Systems Universitatsstr) ;
  • Garmabi, Seyedmehdi (Ruhr-Universitat Bochum, Mechanics of Adaptive Systems Universitatsstr)
  • 투고 : 2013.01.21
  • 심사 : 2014.03.19
  • 발행 : 2015.04.25

초록

In this paper a method of finding optimal positions for piezoelectric actuators and sensors on different structures is presented. The genetic algorithm and multi-objective genetic algorithm are selected for optimization and $H_{\infty}$ norm is defined as a cost function for the optimization process. To optimize the placement concerning the selected modes simultaneously, the multi-objective genetic algorithm is used. The optimization is investigated for two different structures: a cantilever beam and a simply supported plate. Vibrating structures are controlled in a closed loop with feedback gains, which are obtained using optimal LQ control strategy. Finally, output of a structure with optimized placement is compared with the output of the structure with an arbitrary, non-optimal placement of piezoelectric patches.

키워드

참고문헌

  1. Andersson, J., (2001), Multiobjective optimization in engineering design, Linkoeping University, Sweeden.
  2. Azizi, A., Dourali, L., Zareie, S. and Rad, F.P. (2009), "Control of vibration suppression of an smart beam by piezoelectric elements", Proceedings of the 2nd international conference on environmental and computer science, ICECS '09.
  3. Barboni, R., Mannini, A., Fantini, E. and Gaudenzi, P. (2000), "Optimal placement of PZT actuators for the control of beam dynamics", Smart Mater. Struct., 9(1), 110-120. https://doi.org/10.1088/0964-1726/9/1/312
  4. Bruant, I. and Proslier, L. (2005), "Optimal location of actuator and sensor in active vibration control", J. Intel. Mat. Syst. Str., 16(3), 197-206. https://doi.org/10.1177/1045389X05047989
  5. Bruant, I., Gallimard, L. and Nikoukar, S. (2010), "Optmal piezoelectric actuator and sensor location for active vibration control, using genetic algorithm", J. Sound Vib., 329(10), 1615-1635. https://doi.org/10.1016/j.jsv.2009.12.001
  6. Casciati, F., Magonette, G. and Marazzi, F. (2006), Technology of Semiactive Devices and Applications in Vibration Mitigation, Chichester/Gb, John Wiley & Sons Ltd.
  7. Collet, M. (2001), "Shape Optimization of Piezoelectric Sensors Dealing with Spill-Over Instability", IEEE T. Contr. Syst. T., 9(4) 654-662. https://doi.org/10.1109/87.930977
  8. Crawley, E. and de Luis, J. (1987), "Use of piezoelectric actuators as elements of intelligent structures", AIAA J., 25(10),1373-1385. https://doi.org/10.2514/3.9792
  9. Deb, K. (1998), "An efficient constraint handling method for genetic algorithms", Comput. Method. Appl. M., 186(2-4), 311-338.
  10. Deb, K. (2001), Multi-objective optimization using evolutionary algorithms, Chichester, UK, Wiley.
  11. Gawronski, W. (2004), Advanced Structural Dynamics and Active Control of Strutures, California Institute of Technology, Springer.
  12. Gupta, V., Sharma, M. and Thakur, N. (2010), "Optimization criteria for optimal placement of piezoelectric sensors and actuators on a smart structure: A technical review", J. Intel. Mat. Syst. Str., 21(2), 1227-1243. https://doi.org/10.1177/1045389X10381659
  13. Hajela, P. and Lin, C. (1992), "Genetic search strategies in multicriterion optimal design", Struct. Optimization, 4(2), 99-107. https://doi.org/10.1007/BF01759923
  14. Han, J.H. and Le, I. (1999), "Optimal placement of piezoelectric sensors and actuators for vibration control of a composite plate using genetic algorithm", Smart Mater. Struct., 8(2), 257-267. https://doi.org/10.1088/0964-1726/8/2/012
  15. Kumar, K.R. and Narayanan, S. (2007), "The optimal location of piezoelectric actuators and sensors for vibration control of plates", Smart Mater. Struct., 16(6), 2680-2691. https://doi.org/10.1088/0964-1726/16/6/073
  16. Kumar, K.R. and Narayanan, S. (2008), "Active vibration control of beam with optimal placement of piezoelectric sensor/actuator pairs", Smart Mater. Struct., 17(5), 055008. https://doi.org/10.1088/0964-1726/17/5/055008
  17. Lee, M.H. (2013), "Beam structural system moving forces active vibration control using a combined innovative control approach", Smart Struct. Syst., 12(2), 121-136. https://doi.org/10.12989/sss.2013.12.2.121
  18. Liu, J.J. and Liaw, B.M. (2004), "Efficiency of active control of beam vibration using PZT patches", Proceedings of the SEM X international congress & exposition on experimental and applied mechanics, Costa Mesa, Section 59: Smart Structures.
  19. Liu, X. and Hu, J. (2011), "Lower order vibration control for structures with highly correlated close modes" Scinece China, Technol. Scei., 54(7), 1855-1864. https://doi.org/10.1007/s11431-011-4376-2
  20. Nestorovic, T., Koppe, H. and Gabbert, U. (2005), "Active vibration control using optimal LQ tracking systems with additional dynamics", Int. J. Control, 78(15), 1182-1197. https://doi.org/10.1080/00207170500163383
  21. Nestorovic, T., Durrani, N. and Trajkov, M. (2012), "Experimental model identification and vibration control of a smart cantilever beam using piezoelectric actuators and sensors", J. Electroceram, 29(1), 42-55. https://doi.org/10.1007/s10832-012-9736-1
  22. Nestorovic, T. and Trajkov, M. (2013), "Optimal actuator and sensor placement based on balanced reduced models", Mech. Syst. Signal Pr., http://dx.doi.org/10.1016/j.ymssp.2012.12.008i
  23. Peng, F., Ng, A. and Hu, Y.R. (2005), "Actuator placement optimization and adaptive control of plate smart structures", J. Intel. Mat. Syst. Str., 16(3), 263-271. https://doi.org/10.1177/1045389X05050105
  24. Preumont, A. (2001), Vibration Control of Active Structures, Brussels.
  25. Popov, A. (2005), Genetic algorithm for optimization: user manual, Hamburg.
  26. Sadri, A.M., Wright, J.R. and Wynne, R.J. (1999), "Modelling and optimal placement of piezoelectric actuators in isotropic plates using genetic algorithm", Smart Mater. Struct., 8, 490-498. https://doi.org/10.1088/0964-1726/8/4/306
  27. Schoeftner J. and Buchberger G. (2013), "Active shape control of a cantilever by resistively interconnected piezoelectric patches", Smart Struct. Syst., 12(5), 501-521. https://doi.org/10.12989/sss.2013.12.5.501
  28. Vasques, C.M.A. and Dias Rodrigues, J. (2006), "Active vibration control of smart piezoelectric beams:Comparison and optimal feedback control strategies", Comput. Struct., 84(22-23), 1402-1414. https://doi.org/10.1016/j.compstruc.2006.01.026
  29. Wehrens, R. and Buydens, L.M.C. (1998), "Evolutionary optimisation: a tutorial", TRAC- Trends Anal. Chem., 17(4), 193-203. https://doi.org/10.1016/S0165-9936(98)00011-9
  30. Yang, Y., Jin, Z. and Soh, C.K. (2005), "Integrated optimal design of vibration control system for smart beams using genetic algorithms", J. Sound Vib., 282(3-5), 1293-1307. https://doi.org/10.1016/j.jsv.2004.03.048

피인용 문헌

  1. Optimal placement of piezoelectric patches over a smart structure vol.183, pp.1, 2017, https://doi.org/10.1080/10584587.2017.1375823
  2. Robust observer-based adaptive fuzzy sliding mode controller vol.76-77, 2016, https://doi.org/10.1016/j.ymssp.2016.01.015
  3. Design principles for stiffness-tandem energy dissipation coupling beam vol.20, pp.1, 2015, https://doi.org/10.12989/sss.2017.20.1.053
  4. Optimal sensor placement for cable force monitoring using spatial correlation analysis and bond energy algorithm vol.20, pp.6, 2015, https://doi.org/10.12989/sss.2017.20.6.769
  5. Finite element-based software-in-the-loop for offline post-processing and real-time simulations vol.67, pp.6, 2015, https://doi.org/10.12989/sem.2018.67.6.643
  6. Multi-objective colliding bodies optimization algorithm for design of trusses vol.6, pp.1, 2015, https://doi.org/10.1016/j.jcde.2018.04.001
  7. A new VPS-based algorithm for multi-objective optimization problems vol.36, pp.3, 2020, https://doi.org/10.1007/s00366-019-00747-8
  8. Optimal placement of piezoelectric actuator/senor patches pair in sandwich plate by improved genetic algorithm vol.26, pp.6, 2015, https://doi.org/10.12989/sss.2020.26.6.721