Acknowledgement
Supported by : CAPES, CNPQ
References
- Alwis, W.A.M., Olorunniwo A. and Ang, K.K. (1994), "Long-term deflection of RC beams", J. Eng., 120, 2220-2226.
- Bazant, Z.P. (1988), "Material models for structural creep analysis", Mathematical Modeling of creep and shrinkage of concrete, John Wiley & Sons Ltd, 99-215.
- Bazant, Z.P. and Oh, B. (1984), "Deformation of progressively cracking reinforced concrete beams", J. Am. Concrete Inst., 81, 268-278.
- Bazant, Z.P. and Prasannan, S. (1988), "Solidification theory for aging creep", Cement Concrete Res., 18, 923 -932. https://doi.org/10.1016/0008-8846(88)90028-2
- Chaudhary, S., Pendharkar, U. and Nagpal, A.K. (2007), "Service load behavior of continuous composite beams with precast decks considering creep, shrinkage and cracking", Asian J. Civil Eng. (Building and housing), 8(4), 423-442.
- Comite Euro-International du Beton (1990) "CEB-FIP model code 1990", CEB Bull. No. 213/214, Lausanne, Switzerland; 1983.
- Dias, M.M. (2013), "Numerical analysis of steel-concrete composite beams by using the finite element method: creep and shrinkage effects over time", MSc. Dissertation, Federal University of Rio Grande do Sul, Porto Alegre (in Portuguese).
- Gara, F., Leoni and G. and Dezi, L. (2009), "A beam finite element including shear lag effect for the time dependent analysis of steel-concrete composite decks", Eng. Struct., 31, 1888-1902. https://doi.org/10.1016/j.engstruct.2009.03.017
- Gilbert, R.L. and Bradford, M.A. (1995) "Time-dependent behavior of continuous composite beams at service loads", J. Struct.l Eng. , 121, 319-327. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:2(319)
- Hwang, J. and Kwak, H.G. (2013) "Improved FE model to simulate interfacial bond-slip behavior in composite beams under cyclic loading", Comput. Struct., 125, 164-176. https://doi.org/10.1016/j.compstruc.2013.04.020
- Jaccoud, J. P. and Favre, R. (1982), "Fleche des structures en beton arme - verification experimentale d'une methode de calcul", Annales de I'institut Technique du Batiment et des Travaux Publics, Lausanne.
- Jiang, M.; Qiu, W. and Zhang, Z. (2009), "Time-dependent analysis of steel-concrete composite beams" International Conference on Engineering Computation, 8-11.
- Liu, X., Bradford, M.A. and Erkmen, R.E. (2013), "Time-dependent response of spatially curved steel-concrete composite members. I: computational modeling", J. Struct. Eng. , 139, CID: 04013004.
- Macorini, L., Fragiacomo, M., Amadio, C. and Izzuddin, B.A. (2006), "Long-term analysis of steel-concrete composite beams: FE modelling for effective width evaluation", Eng. Struct., 28, 1110-1121. https://doi.org/10.1016/j.engstruct.2005.12.002
- Povoas, R. (1991), "Non-linear models for analysis and dimensioning", Ph.D. Dissertation, Porto University, Porto (in Portuguese).
- Razaqpur, A. and Nofal, M. A. (1989) "Finite element for modeling the nonlinear behavior of shear connectors in composite structures ", Comput. Struct., 32, 169-174. https://doi.org/10.1016/0045-7949(89)90082-5
- Sakr, M.A. and Sakla, S.S. (2008), "Long term deflection of cracked composite beams with nonlinear partial shear interaction: I - Finite element modeling", J. Construct. Steel Res., 64, 1446-1455. https://doi.org/10.1016/j.jcsr.2008.01.003
- Smith, I.M., Griffiths, D.V. and Margetts, L. (2014), "Programming the finite element method", (5th Edition), John Wiley & Sons Ltd, New York, NY, United Kingdon.
- Tamayo, J.L.P. (2011), "Numerical analysis of composite beams by the finite element method", MSc. Dissertation, Federal University of Rio Grande do Sul, Porto Alegre (in Portuguese).
- Tamayo, J., Morsch, I. and Awruch, A.M. (2014) "Short-time numerical analysis of steel-concrete composite beams", J. Brazil. Soc. Mech. Sci. Eng., DOI 10.1007/s40430-014-0237-9.
- Valipour, H.R. and Bradford, M.A. (2009)," A steel-concrete composite beam element with material nonlineatities and partial shear interaction", Finite Elem. Anal. Des., 45, 966-972. https://doi.org/10.1016/j.finel.2009.09.011
Cited by
- Flexural stiffness of steel-concrete composite beam under positive moment vol.20, pp.6, 2016, https://doi.org/10.12989/scs.2016.20.6.1369
- Numerical simulation of reinforced concrete nuclear containment under extreme loads vol.58, pp.5, 2016, https://doi.org/10.12989/sem.2016.58.5.799
- Finite element study of effective width in steel-concrete composite beams under long-term service loads vol.15, pp.8, 2018, https://doi.org/10.1590/1679-78254599
- Customization of a software of finite elements to analysis of concrete structures: long-term effects vol.11, pp.4, 2018, https://doi.org/10.1590/s1983-41952018000400005
- Effect of GGBFS on time-dependent deflection of RC beams vol.19, pp.1, 2015, https://doi.org/10.12989/cac.2017.19.1.051
- Numerical simulation of external pre-stressed steel-concrete composite beams vol.19, pp.2, 2015, https://doi.org/10.12989/cac.2017.19.2.191
- Some Aspects of Numerical Modeling of Steel-Concrete Composite Beams with Prestressed Tendons vol.16, pp.7, 2015, https://doi.org/10.1590/1679-78255599
- Analysis of effects of shrinkage of concrete added to widen RC girder bridge vol.23, pp.5, 2019, https://doi.org/10.12989/cac.2019.23.5.329
- Statistical bias indicators for the long-term displacement of steel-concrete composite beams vol.24, pp.4, 2015, https://doi.org/10.12989/cac.2019.24.4.379
- Computing Creep Secondary Internal Forces in Continuous Steel-Concrete Composite Beam Constructed through Segmented Pouring vol.146, pp.3, 2015, https://doi.org/10.1061/(asce)st.1943-541x.0002494
- Modelling of the flexural stiffness of concrete-steel beams under negative moment vol.173, pp.4, 2015, https://doi.org/10.1680/jstbu.18.00122
- Effect of position of hexagonal opening in concrete encased steel castellated beams under flexural loading vol.26, pp.1, 2015, https://doi.org/10.12989/cac.2020.26.1.095