Acknowledgement
Supported by : Celal Bayar University
References
- Altun, F., Kisi, O. and Aydin, K. (2008), "Predicting the compressive strength of steel fiber added lightweight concrete using neural network", Compos. Mater. Sci., 42, 259-265. https://doi.org/10.1016/j.commatsci.2007.07.011
- ASTM C 597-97 (1998), "Standard test method for pulse velocity through concrete", Easton, MD, USA: American Society for Testing and Materials International.
- ASTM C 805 (1997), Test for rebound number of hardened concrete", West Conshohocken, PA, USA: American Society for Testing and Materials International.
- ASTM C 39 (2001), Test for compressive strength of cylindrical concrete specimens. West Conshohocken, PA, USA: American Society for Testing and Materials International.
- Beutel, R., Reinhardt, H.W., Grosse, C.U., Glaubitt, A., Krause, M., Maierhofer, C., Algernon, D., Wiggenhauser, H. and Schickert, M. (2008), "Comparative performance tests and validation of NDT methods for concrete testing", J. Nondestruct. Eval., 27, 59-65. https://doi.org/10.1007/s10921-008-0037-1
- Bilgehan, M. and Turgut, P. (2010a), "The use of neural networks in concrete compressive strength estimation", Comput. Concr., 7(3), 271-283. https://doi.org/10.12989/cac.2010.7.3.271
- Bilgehan, M. and Turgut, P. (2010b), "Artificial neural network approach to predict compressive strength of concrete through ultrasonic pulse velocity", Res. Nondestruct. Eval., 21, 1-17. https://doi.org/10.1080/09349840903122042
- Demirboga, R., Turkmen, I. and Karakoc, M.B. (2004), "Relationship between ultrasonic velocity and compressive strength for high-volume mineral-admixtured concrete", Cement Concrete Res, 34, 2329-2336. https://doi.org/10.1016/j.cemconres.2004.04.017
- Ercikdi, B., Yilmaz, T. and Kulekci, G. (2014), "Strength and ultrasonic properties of cemented paste backfill", Ultrasonics, 54, 195-204. https://doi.org/10.1016/j.ultras.2013.04.013
- Hola, J. and Schabowicz, K. (2005), "New technique of nondestructive assessment of concrete strength using artificial intelligence", NDT&E Int., 38, 251-259. https://doi.org/10.1016/j.ndteint.2004.08.002
- Kewalramani, M.A. and Gupta, R. (2006), "Concrete compressive strength prediction using ultrasonic pulse velocity through artificial neural networks", Automat. Constr., 15, 374-379. https://doi.org/10.1016/j.autcon.2005.07.003
- Komlos, K., Popovics, S., Nurnbergerova, T., Babal, B. and Popovics, J.S. (1996), "Ultrasonic pulse velocity test of concrete properties as specified in national standards", Cement Concrete Compos, 18, 357-364. https://doi.org/10.1016/0958-9465(96)00026-1
- Liu, J.C., Sue, M.L. and Kou, C.H. (2009), "Estimating the strength of concrete using surface rebound value and design parameters of concrete material", Tamkang J. Sci. Eng., 12(1), 1-7.
- Mazloom, M. and Yoosefi, M.M. (2013), "Predicting the indirect tensile strength of self-compacting concrete using artificial neural networks", Comput. Concr., 12(3), 285-301. https://doi.org/10.12989/cac.2013.12.3.285
- Shariati, M., Sulong, H.R., Arabnejad, M.M.K.H., Shafigh, P. and Sinaei, H. (2011), "Assessing the strength of reinforced concrete structures through ultrasonic pulse velocity and schmidt rebound hammer tests", Sci. Res. Essays, 6(1), 213-220.
- Sheena, N.Y., Huangb, J.L. and Le, H.D. (2013), "Predicting strength development of RMSM using ultrasonic pulse velocity and artificial neural network", Comput. Concr., 12(6), 785-802. https://doi.org/10.12989/cac.2013.12.6.785
- Tanarslan, H.M., Secer, M. and Kumanlioglu, A. (2012), "An approach for estimating the capacity of RC beams strengthened in shear with FRP reinforcements using artificial neural networks", Constr. Build. Mater., 30, 556-568. https://doi.org/10.1016/j.conbuildmat.2011.12.008
- Topcu, I.B. and Canbaz, M. (2007), "Effect of different fibers on the mechanical properties of concrete containing fly ash", Constr. Build. Mater., 21(7), 1486-1491. https://doi.org/10.1016/j.conbuildmat.2006.06.026
- Trtnik, G., Kavcic, F. and Turk, G. (2009), "Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks", Ultrasonics, 49, 53-60. https://doi.org/10.1016/j.ultras.2008.05.001
- Ulucan, Z.C ., Turk, K. and Karatas, M. (2008), "Effect of mineral admixtures on the correlation between ultrasonic velocity and compressive strength for self-compacting concrete", Russ. J. Nondestruct., 44(5), 367-374. https://doi.org/10.1134/S1061830908050100
Cited by
- Non-destructive assessment of the three-point-bending strength of mortar beams using radial basis function neural networks vol.16, pp.6, 2015, https://doi.org/10.12989/cac.2015.16.6.919
- Prediction of behavior of fresh concrete exposed to vibration using artificial neural networks and regression model vol.60, pp.4, 2016, https://doi.org/10.12989/sem.2016.60.4.655
- Predicting the strength properties of slurry infiltrated fibrous concrete using artificial neural network 2018, https://doi.org/10.1007/s11709-017-0445-3
- Investigation on the Sensitivity of Ultrasonic Test Applied to Reinforced Concrete Beams Using Neural Network vol.8, pp.3, 2018, https://doi.org/10.3390/app8030405
- Study on vertical and batter piles subjected to lateral loads in different non-cohesive sub-soil conditions pp.1939-7879, 2020, https://doi.org/10.1080/19386362.2018.1564181
- Strength prediction of similar materials to ionic rare earth ores based on orthogonal test and back propagation neural network pp.1433-7479, 2019, https://doi.org/10.1007/s00500-019-03833-7
- Artificial neural network model using ultrasonic test results to predict compressive stress in concrete vol.19, pp.1, 2017, https://doi.org/10.12989/cac.2017.19.1.059
- Modeling of mechanical properties of roller compacted concrete containing RHA using ANFIS vol.19, pp.4, 2015, https://doi.org/10.12989/cac.2017.19.4.435
- Mechanical behavior of stud shear connectors embedded in HFRC vol.24, pp.2, 2015, https://doi.org/10.12989/scs.2017.24.2.177
- Evaluation of concrete compressive strength based on an improved PSO-LSSVM model vol.21, pp.5, 2015, https://doi.org/10.12989/cac.2018.21.5.505
- Neuro-fuzzy based approach for estimation of concrete compressive strength vol.21, pp.6, 2015, https://doi.org/10.12989/cac.2018.21.6.697
- Behavior of vertical and batter piles under lateral, uplift and combined loads in non-cohesive soil vol.4, pp.1, 2015, https://doi.org/10.1007/s41062-019-0242-z
- Displacement prediction of precast concrete under vibration using artificial neural networks vol.74, pp.4, 2015, https://doi.org/10.12989/sem.2020.74.4.559
- Compressive strength modeling of blended concrete based on empirical and artificial neural network techniques vol.5, pp.4, 2015, https://doi.org/10.1080/24705314.2020.1783120
- Nano-materials on the strength of ultra-high performance concrete vol.578, pp.1, 2015, https://doi.org/10.1080/00150193.2021.1902780
- Numerical assessment of a slender structure damaged during October 30, 2020, İzmir earthquake in Turkey vol.19, pp.14, 2021, https://doi.org/10.1007/s10518-021-01197-8