Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Amin, M.N., Kim, J.S., Lee, Y. and Kin, J.K. (2009), "Simulation of the thermal stress in mass concrete using a thermal stress measuring device", Cement Concrete Res., 39(3), 154-164. https://doi.org/10.1016/j.cemconres.2008.12.008
- Wittmann, F.H., Roelfstra P.E. and Sadouki H. (1985), "Simulation and analysis of composite structures", Mater. Sci. Eng., 68(2), 239-248. https://doi.org/10.1016/0025-5416(85)90413-6
- Yasar, Ergul, Yasin Erdogan, and Alaettin Kilic, (2004), "Effect of limestone aggregate type and water- cement ratio on concrete strength", Mater. letters, 58(5), 772-777. https://doi.org/10.1016/j.matlet.2003.06.004
- Elices, M. and Rocco, C.G. (2008), "Effect of aggregate size on the fracture and mechanical properties of a simple concrete", Eng. Fract. Mech., 75(13), 3839-3851. https://doi.org/10.1016/j.engfracmech.2008.02.011
- Rocco, C.G. and Elices, M. (2009) "Effect of aggregate shape on the mechanical properties of a simple concrete", Eng. Fract. Mech., 76(2), 286-298. https://doi.org/10.1016/j.engfracmech.2008.10.010
- He, H., Stroeven, P., Stroeven, M. and Sluys, L.J. (2011), "Influence of particle packing on fracture properties of concrete", Comput. Concr., 8(6), 677-692. https://doi.org/10.12989/cac.2011.8.6.677
- Yan, D., and Lin, G., (2006), "Dynamic properties of concrete in direct tension", Cement Concrete Res., 36(7), 1371-1378. https://doi.org/10.1016/j.cemconres.2006.03.003
- Almusallam, A.A., Beshr, H., Maslehuddin, M. and Al-Amoudi, O.S. (2004), "Effect of silica fume on the mechanical properties of low quality coarse aggregate concrete", Cement Concrete Compos., 26(7), 891-900. https://doi.org/10.1016/j.cemconcomp.2003.09.003
- Tang, X.W., Zhou, Y., Zhang, C.H. and Shi, J. (2011), "Study on the heterogeneity of concrete and its failure behavior using the equivalent probabilistic model", J. Mater. Civil Eng., 23(4), 402-413. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000179
- Peerlings, R.H.J. (1999), "Enhaced damage modelling for fracture and fatigue: Proefschrift", Technische Universiteit Eindhoven.
- Jirasek, M. and Marfia, S. (2005), "Non-local damage model based on displacement averaging", Int. J. Numer. Method. Eng., 63(1), 77-102. https://doi.org/10.1002/nme.1262
- Wells, G.N. and Sluys, L.J. (2001), "A new method for modelling cohesive cracks using finite elements", Int. J. Numer. Method. Eng., 50(12), 2667-2682. https://doi.org/10.1002/nme.143
- Wanne, T.S and Young, R.P. (2008), "Bonded-particle modeling of thermally fractured granite", Int. J. Rock Mech. Min. Sci., 45(5), 789-799. https://doi.org/10.1016/j.ijrmms.2007.09.004
- Azevedo, N.M., de Lemos, J.V. and de Almeida J.R. (2010), "A discrete particle model for reinforced concrete fracture analysis", Struct. Eng. Mech., 36(3), 343-361. https://doi.org/10.12989/sem.2010.36.3.343
- Grassl, P., and Jirasek, M., (2010), "Meso-scale approach to modelling the fracture process zone of concrete subjected to uniaxial tension", Int. J. Solids Struct., 47(7), 957-968. https://doi.org/10.1016/j.ijsolstr.2009.12.010
- Qian, Z., Ye, G., Schlangen, E. and Van Breugel, K. (2011), "3D lattice fracture model: application to cement paste at micro scale", Key Eng. Mater., 452, 65-68.
- Tang, C.A. and Zhu, W.C. (2003), Concrete Damage and Fracture Numerical Simulate, Science Press, Beijing, China.
- Zhou, X.Q. and Hao, H. (2008), "Mesoscale modelling of concrete tensile failure mechanism at high strain rates", Comput. Struct., 86(21), 2013-2026. https://doi.org/10.1016/j.compstruc.2008.04.013
- Walraven, J. (1981), "Theory and experiments on the mechanical behavior of cracks in plain and reinforced concrete subjected to shear loading", Heron, 26(1).
- Wang, Z.M., Kwan, A.K.H. and Chan, H.C. (1999), "Mesoscopic study of concrete I: generation of random aggregate structure and finite element mesh", Comput. Struct., 70(5), 533-544. https://doi.org/10.1016/S0045-7949(98)00177-1
- Van Mier, J.G.M. and Shi, C. (2002), "Stability issues in uniaxial tensile tests on brittle disordered materials", Int. J. Solids Struct., 39(13), 3359-3372. https://doi.org/10.1016/S0020-7683(02)00159-2
- Bazant, Z.P. and Oh, B H. (1983), "Crack band theory for fracture of concrete", Mater. Struct., 16(93), 155-177.
- Brekelmans, W.A.M. and De Vree, J.H.P. (1995), "Reduction of mesh sensitivity in continuum damage mechanics", Acta Mech., 110(1-4), 49-56. https://doi.org/10.1007/BF01215415
- Tang, X.W., Zhang, C.H. and Shi, J.J. (2008), "A multiphase mesostructure mechanics approach to the study of the fracture-damage behavior of concrete", Sci. China Series E: Tech. Sci., 51(2), 8-24. https://doi.org/10.1007/s11431-008-6005-2
- Galvez, J.C., Elices, M., Guinea, G.V. and Planas, J. (1998), "Mixed mode fracture of concrete under proportional and nonproportional loading", Int. J. Fract., 94(3), 267-284. https://doi.org/10.1023/A:1007578814070
- Zhu, B.F. (2013), "Thermal stresses and temperature control of mass concrete", China Electric Power Press, Beijing, China, 67-70.
- Tang S.B. and Tang, C.A. (2009), "Numerical approach on the thermo-mechanical coupling of brittle material", Chinese J. Comput. Mech., 26(2), 172-179.
- Hafner, Stefan, Stefan Eckardt, Torsten Luther, Carsten Konke, (2006), "Mesoscale modeling of concrete: Geometry and numeric", Comput. Struct., 84(7), 450-461. https://doi.org/10.1016/j.compstruc.2005.10.003
Cited by
- Stress and damage in concrete induced by pipe cooling at mesoscopic scale vol.9, pp.2, 2017, https://doi.org/10.1177/1687814017690509
- Mathematical modeling of concrete pipes reinforced with CNTs conveying fluid for vibration and stability analyses vol.19, pp.3, 2017, https://doi.org/10.12989/cac.2017.19.3.325
- Seismic response of SiO2 nanoparticles-reinforced concrete pipes based on DQ and newmark methods vol.19, pp.6, 2015, https://doi.org/10.12989/cac.2017.19.6.745
- Effect of thermal-induced microcracks on the failure mechanism of rock specimens vol.22, pp.1, 2018, https://doi.org/10.12989/cac.2018.22.1.093
- A simplified probabilistic model for the combined action of carbonation and chloride ingress vol.71, pp.7, 2019, https://doi.org/10.1680/jmacr.18.00140
- Fracture Behavior and Energy Analysis of 3D Concrete Mesostructure under Uniaxial Compression vol.12, pp.12, 2019, https://doi.org/10.3390/ma12121929
- Effect of material of post-cooling pipes on temperature and thermal stress in mass concrete vol.20, pp.None, 2015, https://doi.org/10.1016/j.istruc.2019.03.015