DOI QR코드

DOI QR Code

Analyzing consolidation data to obtain elastic viscoplastic parameters of clay

  • Le, Thu M. (Centre for Built Infrastructure Research, School of Civil and Environmental Engineering, University of Technology Sydney (UTS)) ;
  • Fatahi, Behzad (Centre for Built Infrastructure Research, School of Civil and Environmental Engineering, University of Technology Sydney (UTS)) ;
  • Disfani, Mahdi (Melbourne School of Engineering, The University of Melbourne) ;
  • Khabbaz, Hadi (Centre for Built Infrastructure Research, School of Civil and Environmental Engineering, University of Technology Sydney (UTS))
  • 투고 : 2014.06.12
  • 심사 : 2015.01.13
  • 발행 : 2015.04.25

초록

A nonlinear creep function incorporated into the elastic visco-plastic model may describe the long-term soil deformation more accurately. However, by applying the conventional procedure, there are challenges to determine the model parameters due to limitation of suitable data points. This paper presents a numerical solution to obtain several parameters simultaneously for a nonlinear elastic visco-plastic (EVP) model using the available consolidation data. The finite difference scheme using the Crank-Nicolson procedure is applied to solve a set of coupled partial differential equations of the time dependent strain and pore water pressure dissipation. The model parameters are determined by applying the algorithm of trust-region reflective optimisation in conjunction with the finite difference solution. The proposed method utilises all available consolidation data during dissipation of the excess pore water pressure to determine the required model parameters. Moreover, the reference time in the elastic visco-plastic model can readily be adopted as a unit of time; denoting creep is included in the numerical predictions explicitly from the very first time steps. In this paper, the settlement predictions of thick soft clay layers are presented and discussed to evaluate and compare the accuracy and reliability of the proposed method against the graphical procedure to obtain the model parameters. In addition, comparison of the available experimental results to the numerical predictions confirms the accuracy of the numerical procedure.

키워드

참고문헌

  1. Andersen, K.H., Rosenbrand, W.F., Brown, S.F. and Pool, J.H. (1980), "Cyclic and static laboratory tests on Drammen clay", J. Geotech. Eng. Div., 106(5), 499-529.
  2. Azari, B., Fatahi, B. and Khabbaz, H. (2014), "Assessment of the elastic-viscoplastic behavior of soft soils improved with vertical drains capturing reduced shear strength of a disturbed zone", Int. J. Geomech. DOI: 10.1061/(ASCE)GM.1943-5622.0000448, B4014001.
  3. Berre, T. and Iversen, K. (1972), "Oedometer tests with different specimen heights on a clay exhibiting large secondary compression", Geotechnique, 22(1), 53-70. https://doi.org/10.1680/geot.1972.22.1.53
  4. Bjerrum, L. (1967), "Engineering geology of Norwegian normally-consolidated marine clays as related to settlements of buildings", Geotechnique, 17(2), 81-118.
  5. Charlie, W. (2000), "Discussion on "Consolidation analysis with pore water pressure measurements"", Geotechnique, 50(5), 607-608. https://doi.org/10.1680/geot.2000.50.5.607
  6. Chen, W., De Kee, D. and Kaloni, P.N. (2003), Advanced Mathematics for Engineering and Science, World Scientific, Singapore.
  7. Coleman, T.F. and Li, Y. (1996), "An interior trust region approach for nonlinear minimization subject to bounds", SIAM J. Optimization, 6(2), 418-445. https://doi.org/10.1137/0806023
  8. Conn, A.R., Scheinberg, K. and Vicente, L.N. (2009), Introduction to Derivative-Free Optimization, Society for Industrial and Applied Mathematics, PA, USA.
  9. Cooreman, S., Lecompte, D., Sol, H., Vantomme, J. and Debruyne, D. (2007), "Elasto-plastic material parameter identification by inverse methods: Calculation of the sensitivity matrix", Int. J. Solid. Struct., 44(13), 4329-4341. https://doi.org/10.1016/j.ijsolstr.2006.11.024
  10. Crank, J. and Nicolson, P. (1947), "A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type", Mathematical Proceedings of the Cambridge Philosophical Society, 43(1), 50-67. https://doi.org/10.1017/S0305004100023197
  11. Crawford, C.B. (1964), "Interpretation of the consolidation test", J. Soil Mech. Found. Eng. Div., 90(5), 87-102.
  12. Degago, S.A., Grimstad, G., Jostad, H.P. and Nordal, S. (2009), "The non-uniqueness of the end-of-primary (EOP) void ratio effective stress relationship", Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering, Alexandria, Egypt, October, pp. 324-327.
  13. Fatahi, B. and Tabatabaiefar, S. (2014), "Fully nonlinear versus equivalent linear computation method for seismic analysis of midrise buildings on soft soils", Int. J. Geomech., 14(4), 04014016. DOI: 10.1061/(ASCE)GM.1943-5622.0000354
  14. Fatahi, B., Le, T.M., Le, M.Q. and Khabbaz, H. (2012), "Soil creep effects on ground lateral deformation and pore water pressure under embankments", Geomech. Geoeng., 8(2), 107-124. DOI: 10.1080/17486025.2012.727037
  15. Floudas, C.A. and Pardalos, P.M. (2008), Encyclopedia of Optimization, Springer, New York, NY, USA.
  16. Geletu, A. (2007), "Solving optimization problems using the Matlab Optimization Toolbox - A Tutorial", TU-Ilmenau, Fakultat fur Mathematik und Naturwissenschaften.
  17. Gnanendran, C., Manivannan, G. and Lo, S.-C. (2006), "Influence of using a creep, rate, or an elastoplastic model for predicting the behaviour of embankments on soft soils", Can. Geotech. J., 43(2), 134-154. https://doi.org/10.1139/t05-090
  18. Gould, N., Orban, D. and Toint, P. (2005), "Numerical methods for large-scale nonlinear optimization", Acta Numerica, 14(1), 299-361. https://doi.org/10.1017/S0962492904000248
  19. Graham, J. and Yin, J.H. (2001), "On the time-dependent behaviour of soft soils", Proceedings of the 3rd International Conference on Soft Soil Engineering, Hong Kong, December, pp. 13-24.
  20. Grasselli, M. and Pelinovsky, D. (2008), Numerical Mathematics, Jones and Bartlett Publishers, Sudbury, MA, USA.
  21. Guven, N. (1992), "Molecular aspects of clay-water interactions", In: Clay-water Interface and its Rheological Implications (N. Guven and R.M. Pollastro Eds.), The Clay Minerals Society.
  22. Ho, L., Fatahi, B. and Khabbaz, H. (2014), "Analytical solution for one-dimensional consolidation of unsaturated soils using eigenfunction expansion method", Int. J. Numer. Anal. Method. Geomech., 38(10), 1058-1077. https://doi.org/10.1002/nag.2248
  23. Hokmabadi, A.S., Fatahi, B. and Samali, B. (2014), "Assessment of soil-pile-structure interaction influencing seismic response of mid-rise buildings sitting on floating pile foundations", Comput. Geotech., 55(0), 172-186. http://dx.doi.org/10.1016/j.compgeo.2013.08.011
  24. Jamiolkowski, M., Ladd, C., Germaine, J. and Lancellotta, R. (1985), "New developments in field and laboratory testing of soils", Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, CA, USA, August, pp. 57-153.
  25. Kaloni, P.N., Chen, W. and De Kee, D. (2003), Advanced Mathematics for Engineering and Science, World Scientific, Singapore; River Edge, NJ, USA.
  26. Karim, M.R. and Gnanendran, C. (2014), "Review of constitutive models for describing the time dependent behaviour of soft clays", Geomech. Geoeng., 9(1), 36-51. https://doi.org/10.1080/17486025.2013.804212
  27. Lambe, T.S. and Whitman, R (1969), Soil Mechanics, John Wiley & Sons, Inc., New York, NY, USA.
  28. Le, T.M., Fatahi, B. and Khabbaz, H. (2012), "Viscous behaviour of soft clay and inducing factors", Geotech. Geol. Eng., 30(5), 1069-1083. https://doi.org/10.1007/s10706-012-9535-0
  29. Le, T.M., Fatahi, B. and Khabbaz, H. (2015), "Numerical optimisation to obtain elastic viscoplastic model parameters for soft clay", Int. J. Plast., 65, 1-21. https://doi.org/10.1016/j.ijplas.2014.08.008
  30. Leroueil, S., Kabbaj, M., Tavenas, F. and Bouchard, R. (1985), "Stress-strain-strain rate relation for the compressibility of sensitive natural clays", Geotechnique, 35(2), 159-180. https://doi.org/10.1680/geot.1985.35.2.159
  31. Mesri, G., Febres-Cordero, E., Shields, D.R. and Castro, A. (1981), "Shear stress-strain-time behaviour of clays", Geotechnique, 31(4), 537-552. https://doi.org/10.1680/geot.1981.31.4.537
  32. Murty, K.G. (2010), Optimization for Decision Making: Linear and Quadratic Models, Springer Science and Bussiness Media, New York, NY, USA.
  33. Nash, D. (2001), "Modelling the effects of surcharge to reduce long term settlement of reclamations over soft clays: A numerical case study", Soil. Found., 41(5), 1-13. https://doi.org/10.3208/sandf.41.5_1
  34. Nguyen, L.D., Fatahi, B. and Khabbaz, H. (2014), "A constitutive model for cemented clays capturing cementation degradation", Int. J. Plast., 56(1), 1-18. https://doi.org/10.1016/j.ijplas.2014.01.007
  35. Raj, P.P. (2008), Soil Mechanics & Foundation Engineering, Dorling Kindersley, London, UK.
  36. Robinson, R. (1999), "Consolidation analysis with pore water pressure measurements", Geotechnique, 49(1), 127-132. https://doi.org/10.1680/geot.1999.49.1.127
  37. Sonpal, R. and Katti, R. (1973), "Consolidation - An analysis with pore pressure measurements", Proceedings of the 8th ICSMFE (Volume 1.2), Moscow, Russia, pp. 385-388.
  38. Strikwerda, J. (2007), Finite Difference Schemes and Partial Differential Equations, Society for Industrial and Applied Mathematics, Pacific Grove, CA, USA.
  39. Tabatabaiefar, S.H.R., Fatahi, B. and Samali, B. (2012), "Seismic behavior of building frames considering dynamic soil-structure interaction", Int. J. Geomech., 13(4), 409-420.
  40. Tabatabaiefar, S.H.R., Fatahi, B. and Samali, B. (2013), "Lateral seismic response of building frames considering dynamic soil-structure interaction effects", Struct. Eng. Mech., Int. J., 45(3), 311-321. https://doi.org/10.12989/sem.2013.45.3.311
  41. Terzaghi, K. (1941), "Undisturbed clay samples and undisturbed clays", J. Boston Soc. Civil Eng., 28(3), 45-65.
  42. Vermeer, P. and Neher, H. (1999), "A soft soil model that accounts for creep", Proceedings of the International Symposium Beyond 2000 in Computational Geotechnics, Amsterdam, Netherlands, March, pp. 249-261.
  43. Watabe, Y., Udaka, K., Nakatani, Y. and Leroueil, S. (2012), "Long-term consolidation behavior interpreted with isotache concept for worldwide clays", Soil. Found., 52(3), 449-464. http://dx.doi.org/10.1016/j.sandf.2012.05.005
  44. Whitman, R., Richardson, A. and Healy, K. (1961), "Time-lags in pore pressure measurements", Proceedings of the 5th International Conference on Soil Mechanic and Foundation Engineering, Paris, France, July, pp. 407-411.
  45. Yin, J.H. (1999), "Non-linear creep of soils in oedometer tests", Geotechnique, 49(5), 699-707. https://doi.org/10.1680/geot.1999.49.5.699
  46. Yin, J.H. and Graham, J. (1989), "Viscous-elastic-plastic modelling of one-dimensional time-dependent behaviour of clays", Can. Geotech. J., 26(2), 199-209. https://doi.org/10.1139/t89-029
  47. Yin, J.H. and Graham, J. (1994), "Equivalent times and one-dimensional elastic viscoplastic modelling of time-dependent stress-strain behaviour of clays", Can. Geotech. J., 31(1), 42-52. https://doi.org/10.1139/t94-005
  48. Yin, J.H. and Graham, J. (1996), "Elastic visco-plastic modelling of one-dimensional consolidation", Geotechnique, 46(3), 515-527. https://doi.org/10.1680/geot.1996.46.3.515
  49. Yin, J.H. and Zhu, J.G. (1999), "Measured and predicted time-dependent stress-strain behaviour of Hong Kong marine deposits", Can. Geotech. J., 36(4), 760-766. https://doi.org/10.1139/t99-043
  50. Yuan, Y. (2011), "Gradient methods for large scale convex quadratic functions", In: Optimization and Regularization for Computational Inverse Problems and Applications, Springer, pp. 141-155.
  51. Yun, G.J. and Shang, S. (2011), "A self-optimizing inverse analysis method for estimation of cyclic elastoplasticity model parameters", Int. J. Plast., 27(4), 576-595. https://doi.org/10.1016/j.ijplas.2010.08.003

피인용 문헌

  1. Contemporary overview of soil creep phenomenon vol.6, pp.1, 2017, https://doi.org/10.1515/ctg-2017-0003
  2. Numerical optimization applying trust-region reflective least squares algorithm with constraints to optimize the non-linear creep parameters of soft soil vol.41, 2017, https://doi.org/10.1016/j.apm.2016.08.034
  3. Trust-region reflective optimisation to obtain soil visco-plastic properties vol.33, pp.2, 2016, https://doi.org/10.1108/EC-11-2014-0236
  4. Experimental study on the consolidation of saturated silty clay subjected to cyclic thermal loading vol.12, pp.4, 2015, https://doi.org/10.12989/gae.2017.12.4.707
  5. An Investigation of Time-Dependent Deformation Characteristics of Soft Dredger Fill vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/8861260