DOI QR코드

DOI QR Code

Seismic lateral earth pressure analysis of retaining walls

  • Ismeik, Muhannad (Department of Civil Engineering, The University of Jordan) ;
  • Shaqour, Fathi (Department of Applied Geology and Environment, The University of Jordan)
  • Received : 2013.09.30
  • Accepted : 2014.12.13
  • Published : 2015.04.25

Abstract

Based on limit equilibrium principles, this study presents a theoretical derivation of a new analytical formulation for estimating magnitude and lateral earth pressure distribution on a retaining wall subjected to seismic loads. The proposed solution accounts for failure wedge inclination, unit weight and friction angle of backfill soil, wall roughness, and horizontal and vertical seismic ground accelerations. The current analysis predicts a nonlinear lateral earth pressure variation along the wall with and without seismic loads. A parametric study is conducted to examine the influence of various parameters on lateral earth pressure distribution. Findings reveal that lateral earth pressure increases with the increase of horizontal ground acceleration while it decreases with the increase of vertical ground acceleration. Compared to classical theory, the position of resultant lateral earth force is located at a higher distance from wall base which in turn has a direct impact on wall stability and economy. A numerical example is presented to illustrate the computations of lateral earth pressure distribution based on the suggested analytical method.

Keywords

References

  1. Ahmadabadi, M. and Ghanbari, A. (2009), "New procedure for active earth pressure calculation in retaining walls with reinforced cohesive-frictional backfill", Geotext. Geomembr., 27(6), 456-463. https://doi.org/10.1016/j.geotexmem.2009.06.004
  2. Bang, S. (1985), "Active earth pressure behind retaining walls", J. Geotech. Eng., 111(3), 407-412. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:3(407)
  3. Basha, B.M. and Babu, G.L.S. (2010), "Seismic rotational displacements of gravity walls by pseudo dynamic method with curved rupture surface", Int. J. Geomech., 10(3), 93-105. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000037
  4. Bowles, J.E. (1996), Foundation Analysis and Design, McGraw Hill, New York, NY, USA.
  5. Caquot, A. and Kerisel, F. (1948), Tables for the Calculations of Passive Pressure, Active Pressure and Bearing Capacity of Foundations, Gauthier-Villars, Paris, France.
  6. Chen, W.F. and Liu, X.L. (1990), Limit Analysis in Soil Mechanics: Developments in Geotechnical Engineering, Elsevier, Amsterdam, Netherlands.
  7. Choudhury, D. and Nimbalkar, S.S. (2006), "Pseudo-dynamic approach of seismic active earth pressure behind a retaining wall", Geotech. Geol. Eng., 24(5), 1103-1113. https://doi.org/10.1007/s10706-005-1134-x
  8. Choudhury, D. and Singh, S. (2005), "New approach for estimation of static and seismic active earth pressure", Geotech. Geol. Eng., 24(1), 117-127. https://doi.org/10.1007/s10706-004-2366-x
  9. Coulomb, C.A. (1776), "Essai sur une application des regles de maximis et minimize a quelqes problemes de stratique relatifs a l' architecture", Memoires de mathematique et de physique, Presentes a l' academie royale des science (Mem. Acad. Roy. Div. Sav.), 7, 343-387.
  10. Das, B.M. and Puri, V.K. (1996), "Static and dynamic active earth pressure", Geotech. Geol. Eng., 14(4), 353-366. https://doi.org/10.1007/BF00421949
  11. Dewaikar, D.M. and Halkude, S.A. (2002), "Seismic passive/active thrust on retaining wall - point of application", Soil. Found., 42(1), 9-15. https://doi.org/10.3208/sandf.42.9
  12. Fukuoka, M. and Imamura, Y. (1984), "Researches on retaining walls during earthquakes", Proceedings of the 8th World Conference on Earthquake Engineering, San Francisco, CA, USA, July, Volume 3, pp. 501-508.
  13. Ghanbari, A. and Taheri, M. (2012), "An analytical method for calculating active earth pressure in reinforced retaining walls subject to a line surcharge", Geotext. Geomembr., 34(1), 1-10. https://doi.org/10.1016/j.geotexmem.2012.02.009
  14. Ghosh, S. (2010), "Pseudo-dynamic active force and pressure behind battered retaining wall supporting inclined backfill", Soil Dyn. Earthq. Eng., 30(11), 1226-1232. https://doi.org/10.1016/j.soildyn.2010.05.003
  15. Ghosh, S. and Sharma, R.P. (2010), "Pseudo-dynamic active response of non-vertical retaining wall supporting c-$\phi$ backfill", Geotech. Geol. Eng., 28(5), 633-641. https://doi.org/10.1007/s10706-010-9321-9
  16. Giri, D. (2011), "Pseudo-dynamic approach of seismic earth pressure behind cantilever retaining wall with inclined backfill surface", Geomech. Eng., Int. J., 3(4), 255-266. https://doi.org/10.12989/gae.2011.3.4.255
  17. Ismeik, M. (2012a), "Practical evaluation of induced stress for calculation of consolidation settlement of soil", Soil Mech. Found. Eng., 49(3), 93-98. https://doi.org/10.1007/s11204-012-9173-9
  18. Ismeik, M. (2012b), "Stress increment solution charts for soil consolidation analysis", Global J. Res. Eng., 12(4), 13-17.
  19. Ismeik, M. and Al-Rawi, O. (2014), "Modeling soil specific surface area with artificial neural networks", Geotech. Test. J., 37(4), 678-688. https://doi.org/10.1520/GTJ20130146
  20. Ismeik, M., Ashteyat, A.M. and Ramadan, K.Z. (2013), "Stabilisation of fine-grained soils with saline water", Eur. J. Environ. Civil Eng., 17(1), 32-45. https://doi.org/10.1080/19648189.2012.720399
  21. Lee, I.K. and Herrington, J.R. (1972), "A theoretical study of the pressure acting on a rigid wall by sloping earth or rock fill", Geotechnique, 22(1), 1-27. https://doi.org/10.1680/geot.1972.22.1.1
  22. Mononobe, N. and Matsuo, H. (1929), "On the determination of earth pressure during earthquakes", Proceedings of the World Engineering Congress, Tokyo, Japan, October, Volume 9, pp. 177-185.
  23. Nouri, H., Fakher, A. and Jones, C.J.F.P. (2006), "Development of horizontal slice method for seismic stability analysis of reinforced slopes and walls", Geotext. Geomembr., 24(3), 175-187. https://doi.org/10.1016/j.geotexmem.2005.11.004
  24. Nouri, H., Fakher, A. and Jones, C.J.F.P. (2008), "Evaluating the effects of the magnitude and amplication of pseudo-static acceleration on reinforced soil slopes and walls using the limit equilibrium horizontal slices method", Geotext. Geomembr., 26(3), 263-278. https://doi.org/10.1016/j.geotexmem.2007.09.002
  25. Okabe, S. (1926), "General theory of earth pressure and seismic stability of retaining walls and dams", J. Japan. Soc. Civil Eng., 10(6), 1277-1288.
  26. Perkins, S., Ismeik, M. and Fogelsong, M. (1998), "Mechanical response of a geosynthetic-reinforced pavement system to cyclic loading", Proceedings of the 5th International Conference on the Bearing Capacity of Roads and Airfields, Trondheim, Norway, July, Volume 3, pp. 1503-1512.
  27. Rankine, W.J.M. (1857), "On the mathematical theory of the stability of earthwork and masonry", Proceedings of the Royal Society of London, London, UK, June, Volume 8, pp. 60-61.
  28. Shahgholi, M., Fakher, A. and Jones, C.J.F.P. (2001), "Horizontal slice method of analysis", Geotechnique, 51(10), 881-885. https://doi.org/10.1680/geot.2001.51.10.881
  29. Shekarian, S., Ghanbari, A. and Farhadi, A. (2008), "New seismic parameters in the analysis of retaining walls with reinforced backfill", Geotext. Geomembr., 26(4), 350-356. https://doi.org/10.1016/j.geotexmem.2008.01.003
  30. Sherif, M.A., Ishibashi, I. and Lee, C.D. (1982), "Earth pressure against rigid retaining walls", J. Geotech. Eng., 108(GT5), 679-695.
  31. Shukla, S.K. and Zahid, M. (2011), "Analytical expression for dynamic active earth pressure from c-$\phi$ soil backfill with surcharge", Int. J. Geotech. Eng., 5(2), 143-150. https://doi.org/10.3328/IJGE.2011.05.02.143-150
  32. Shukla, S.K., Gupta, S.K. and Sivakugan, N. (2009), "Active earth pressure on retaining wall for c-$\phi$ soil backfill under seismic loading condition", J. Geotech. Geoenviron. Eng., 135(5), 690-696. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000003
  33. Sokolovski, V.V. (1965), Statics of Granular Media, Pergamon, London, UK.
  34. Steedman, R.S. and Zeng, X. (1990), "The influence of phase on the dilution of pseudo-static earth pressure on a retaining wall", Geotechnique, 40(1), 103-112. https://doi.org/10.1680/geot.1990.40.1.103
  35. Terzaghi, K. (1943), Theoretical Soil Mechanics, Wiley, New York, NY, USA.
  36. Wang, Y.Z. (2000), "Distribution of earth pressure on a retaining wall", Geotechnique, 50(1), 83-88. https://doi.org/10.1680/geot.2000.50.1.83
  37. Wang, Y.Z., Tang, Z.P. and Zheng, B. (2004), "Distribution of active earth pressure of retaining wall with wall movement of rotation about top", Appl. Math. Mech., 25(7), 761-767. https://doi.org/10.1007/BF02437567

Cited by

  1. Seismic response of geosynthetic reinforced retaining walls vol.10, pp.5, 2016, https://doi.org/10.12989/gae.2016.10.5.635
  2. Earth pressure on a vertical shaft considering the arching effect in c-ϕsoil vol.11, pp.6, 2016, https://doi.org/10.12989/gae.2016.11.6.879
  3. Determination of active failure surface geometry for cohesionless backfills vol.12, pp.6, 2017, https://doi.org/10.12989/gae.2017.12.6.983
  4. A framework for modelling mechanical behavior of surrounding rocks of underground openings under seismic load vol.13, pp.6, 2017, https://doi.org/10.12989/eas.2017.13.6.519
  5. A new modification to Mononobe-Okabe's pseudo-static model for passive earth pressure prediction using homogeneous differential equation vol.116, pp.None, 2015, https://doi.org/10.1016/j.mechrescom.2021.103760
  6. Active earth pressure against inclined rigid retaining wall considering rotation of principal stresses under translation mode vol.14, pp.24, 2015, https://doi.org/10.1007/s12517-021-08057-4