References
- Chen, X., Tang, Q.L., Zhu, Y.J., Zhu, C.I. and Feng, X.P. (2012), "Synthesis and antibacterial property of zinc loaded hydroxyapatite nanorods", Mater. Lett., 89, 233-235. https://doi.org/10.1016/j.matlet.2012.08.115
- Cho, S.H., Oh, S.H. and Lee, J.H. (2005), "Fabrication and characterization of porous alginate/polyvinyl alcohol hybrid scaffolds for 3D cell culture", J. Biomater. Sci., Polym. Ed., 16(8), 933-947. https://doi.org/10.1163/1568562054414658
- Chung, R.J., Hsieh, M.F., Huang, K.C., Perng, L.H., Chou, F.I. and Chin, T.S. (2005), "Anti-microbial hydroxyapatite particles synthesized by a sol-gel route", J. Sol-gel Sci. Tech., 33(2), 229-239. https://doi.org/10.1007/s10971-005-5618-1
- Ho, M.H., Kuo, P.Y., Hsieh, H.J., Hsien, T.Y., Hou, L.T., Lai, J.Y. and Wang, D.M. (2004), "Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods", Biomater., 25(1), 129-138. https://doi.org/10.1016/S0142-9612(03)00483-6
- Jin, H.H., Lee, C.H., Lee, W.K., Lee, J.K., Park, H.C. and Yoon, S.Y. (2008), "In-situ formation of the hydroxyapatite/chitosan-alginate composite scaffolds", Mater. Lett., 62(10), 1630-1633. https://doi.org/10.1016/j.matlet.2007.09.043
- Kumar, G.S., Thamizhavel, A., Yokogawa, Y., Kalkura, S.N. and Girija, E.K. (2012), "Synthesis, characterization and in vitro studies of zinc and carbonate co-substituted nano-hydroxyapatite for biomedical applications", Mater. Chem. Phys., 134(2), 1127-1135. https://doi.org/10.1016/j.matchemphys.2012.04.005
- Lu, L. and Mikos, A.G. (1996), "The importance of new processing techniques in tissue engineering", Mrs. Bull., 21(11), 28-32.
- Ma, M.G., Zhu, Y.J. and Chang, J. (2006), "Monetite formed in mixed solvents of water and ethylene glycol and its transformation to hydroxyapatite", J. Phys. Chem. B, 110(29), 14226-14230. https://doi.org/10.1021/jp061738r
- Maguire, J.K., Cosca, M.F. and Lynch, M.H. (1987), "Problems in implantation", Clin. Orthop., 216, 213-223.
- Maquet, V. and Jerome, R. (1997), "Design of macroporous biodegradable polymer scaffolds for cell transplantation", Mater. Sci. Forum, 250, 15-42. https://doi.org/10.4028/www.scientific.net/MSF.250.15
- Miyaji, F., Kono, Y. and Suyama, Y. (2005), "Formation and structure of zinc-substituted calcium hydroxyapatite", Mater. Res. Bull., 40(2), 209-220. https://doi.org/10.1016/j.materresbull.2004.10.020
- Mourino, V. and Boccaccini, A.R. (2010), "Review: Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds", J. Royal Soc. Interface, 7, 209-227. https://doi.org/10.1098/rsif.2009.0379
- Ninan, N., Muthiah, M., Park, I.K., Elain, A., Thomas, S. and Grohens, Y. (2013), "Pectin/carboxymethyl cellulose/microfibrillated cellulose composite scaffolds for tissue engineering", Carbohyd. Polym., 98(1), 877-885. https://doi.org/10.1016/j.carbpol.2013.06.067
- Ren, F., Xin, R., Ge, X. and Leng, Y. (2009), "Characterization and structural analysis of zinc-substituted hydroxyapatites", Acta Biomater., 5(8), 3141-3149. https://doi.org/10.1016/j.actbio.2009.04.014
- Rho, J.Y., Kuhn-Spearing, L. and Zioupos, P. (1998), "Mechanical properties and the hierarchical structure of bone", Med. Eng. Phys., 20(2), 92-102. https://doi.org/10.1016/S1350-4533(98)00007-1
- Ribeiro, C.C., Barrias, C.C. and Barbosa, M.A. (2004), "Calcium phosphate-alginate microspheres as enzyme delivery matrices", Biomater., 25(18), 4363-4373. https://doi.org/10.1016/j.biomaterials.2003.11.028
- Segal, L.G.J.M.A., Creely, J.J., Martin, A.E. and Conrad, C.M. (1959), "An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer", Textile Res. J., 29(10), 786-794. https://doi.org/10.1177/004051755902901003
- Sowjanya, J.A., Singh, J.,Mohita, T., Sarvanan, S.,Moorthi, A., Srinivasan, N. and Selvamurugan, N. (2013), "Biocomposite scaffolds containing chitosan/alginate/nano-silica for bone tissue engineering", Coll. Surf. B: Biointerf., 109, 294-300. https://doi.org/10.1016/j.colsurfb.2013.04.006
- Sutha, S., Karunakaran, G. and Rajendran, V. (2013), "Enhancement of antimicrobial and long-term biostability of the zinc-incorporated hydroxyapatite coated 316L stainless steel implant for biomedical application", Ceram. Int., 39(5), 5205-5212. https://doi.org/10.1016/j.ceramint.2012.12.019
- Tateishi, T., Chen, G., Ushida, T., Murata, T., Mizuno, S., Lewandrowski, K.U., Wise, D., Trantolo, D., Gresser, J., Yaszemski, M. and Altobelli, D. (2002), Tissue Engineering and Biodegradable Equivalents-Scientific and Clinical Applications, Marcel Dekker Inc., New York.
- Tin-Oo, M.M., Gopalakrishnan, V., Samsuddin, A.R., Al Salihi, K.A. and Shamsuria, O. (2007), "Antibacterial property of locally produced hydroxyapatite", Arch. Orofacial Sci., 2, 41-44.
- Whang, K., Tsai, D.C., Nam, E.K., Aitken, M., Sprague, S.M., Patel, P.K. and Healy, K.E. (1998), "Ectopic bone formation via rhBMP-2 delivery from porous bioabsorbable polymer scaffolds", J. Biomed. Mater. Res., 42, 491-499. https://doi.org/10.1002/(SICI)1097-4636(19981215)42:4<491::AID-JBM3>3.0.CO;2-F
- Xia, Z., Yu, X., Jiang, X., Brody, H.D., Rowe, D.W. and Wei, M. (2013), "Fabrication and characterization of biomimetic collagen-apatite scaffolds with tunable structures for bone tissue engineering", Acta Biomater., 9(7), 7308-7319. https://doi.org/10.1016/j.actbio.2013.03.038
- Xiao, X., Liu, R., Chen, C. and Huang, L. (2008), "Structural characterization of zinc-substituted hydroxyapatite prepared by hydrothermal method", J. Mater. Sci.: Mater. Medicine, 19(2), 797-803. https://doi.org/10.1007/s10856-007-3213-4
- Xu, F.L., Li, Y.B., Han, J. and Lv, G.Y. (2005), "Biodegradable porous nano-hydroxyapatite/alginate scaffold", Mater. Sci. Forum, 486, 189-192.
- Zhang, S.M., Cui, F.Z., Liao, S.S., Zhu, Y. and Han, L. (2003), "Synthesis and biocompatibility of porous nano-hydroxyapatite/collagen/alginate composite", J.Mater. Sci: Mater. Med., 14(7), 641-645.
Cited by
- In situ synthesis of fluorapatite‐ZnO nanocomposite powder via mechanical alloying for biomedical applications vol.17, pp.4, 2015, https://doi.org/10.1111/ijac.13493