DOI QR코드

DOI QR Code

SI-traceable Calibration of a Transmissometer for Meteorological Optical Range (MOR) Observation

기상관측용 투과형 시정계의 국제단위계에 소급하는 교정

  • Park, Seongchong (Division of Physical Metrology, Korea Research Institute of Standards and Science) ;
  • Lee, Dong-Hoon (Division of Physical Metrology, Korea Research Institute of Standards and Science) ;
  • Kim, Yong-Gyoo (Division of Physical Metrology, Korea Research Institute of Standards and Science)
  • 박성종 (한국표준과학연구원 기반표준본부) ;
  • 이동훈 (한국표준과학연구원 기반표준본부) ;
  • 김용규 (한국표준과학연구원 기반표준본부)
  • Received : 2015.01.20
  • Accepted : 2015.03.04
  • Published : 2015.04.25

Abstract

This work demonstrates the indoor SI-traceable calibration of a transmissometer with a 75-m baseline for the measurement of visibility in MOR (Meteorological Optical Range). The calibration is performed using a set of neutral density (ND) filters (OD 0.1-2.5) and a set of high-transmission quartz glass plates (a bare quartz glass plate and antireflective-coated quartz glass plates), the collection consisting of 20 artifacts in total. The luminous transmittance values of the reference artifacts had been calibrated traceable to the KRISS spectral transmittance scale, which ranges from 0.2 % to 99.5 %. The transmissometer to be calibrated typically consists of a loosely collimated light source based on a white LED (CCT ~5000 K) and a luminous intensity detector with a CIE 1924 V(${\lambda}$) spectral response. As a result of calibration, we obtained the MOR error and its uncertainty for the transmissometer in 20 m - 40 km of MOR. Based on the results, we investigated the applicability of the calibration method and the conformity of the transmissometer to the ICAO's (International Civil Aviation Organization) accuracy requirement for meteorological visibility measurement. We expect that this work will establish the standard procedure for the SI-traceable calibration of a transmissometer.

본 논문은 일정 두께를 정하여 대기의 시감투과율을 측정함으로써 시정거리의 표준화된 양인 기상학적 광학거리(Meteorological Optical Range, MOR)를 관측하는, 기상관측용 투과계의 국제단위계에 소급하는 실내 교정방법과 그 교정 예를 소개하고 있다. 국제단위계 유도량 중 하나인 시감투과율 눈금을 교정대상 투과계에 전달해주기 위한 기준물로서 시감투과율 0.2 % ~ 99.5 % 범위의 OD 0.1 ~ 2.5 의 ND 필터와 석영유리, 무반사처리된 석영유리 등 총 20종을 이용하였고, 이 기준물의 분광투과율은 한국표준과학연구원의 분광투과율 표준기를 이용하여 교정된 것이다. 교정 대상 투과계는 기준거리 - 수광부와 검출부 사이의 거리 - 가 75 m 이고 측정광으로는 색온도 약 5000 K의 백색 LED를 이용하고, 광검출기로는 CIE 1924 V(${\lambda}$) 분광응답을 갖는 광도계를 이용하는 방식이다. 교정은 기준물을 투과계 사이에 위치하여 투과계가 표출하는 시감투과율 및 MOR 값을 기준값과 비교하는 방식으로 이루어졌으며, 교정 결과 20 m ~ 40 km 범위의 MOR에 대하여 MOR 오차와 그 불확도를 산출 할 수 있었다. 교정결과를 토대로 본 연구에서 소개하는 교정방법과 교정결과가 국제민간항공기구(International Civil Aviation Organization, ICAO)의 시정관측의 정확도 요건에 부합할 수 있는지를 고찰하였다.

Keywords

References

  1. International Civil Aviation Organization (ICAO), Manual of Runway Visual Range Observing and Reporting Practices, Doc 9328, AN/908 3rd Edition (2005).
  2. World Meteorological Organization (WMO), CIMO Guide to Meteorological Instruments and Methods of Observation, Chapter 9, WMO-No. 8 (2008).
  3. Bureau International des Poids et Mesures (BIPM), Agreement between the World Meteorological Organization and the International Committee for Weights and Measures, http://www.bipm.org/utils/common/pdf/liaisons/Agreement-CIPM-WMO.pdf
  4. Weather Observation Standardization Act (KMA, 2014); Regulation on Verification of Meteorological Instruments (KMA, 2012).
  5. S. Park, D.-H. Lee, and Y.-G. Kim, SI-traceable Calibration of a Transmissometer for Visibility Measurement, TECO-2014, WMO Technical Conference on Meteorological and Environmental Instruments and Methods of Observation, P2(5) (Saint Petersburg, Russian Federation, 07-09 July 2014).
  6. CIE 15:2004, Colorimetry, 3rd ed. (Commission Internatioinale de l'Eclairage, 2004).
  7. A. Arnulf, J. Bricard, E. Cure, and C. Veret, "Transmission by haze and fog in the spectral region 0.35 to 10 microns," J. Opt. Soc. Am. 47, 491-497 (1957). https://doi.org/10.1364/JOSA.47.000491
  8. VAISALA LT-31, http://www.vaisala.com/en/products/visibilitysensors/Pages/LT31.aspx
  9. OPTEC LPV-3, http://www.optecinc.com/visibility/lpv-3.htm
  10. Note that the product names in this paper are provided only for clear description on our work, thus the authors do not claim any types of preferences on those products.
  11. N. P. Fox, "Trap detectors and their properties," Metrologia 28, 197 (1991). https://doi.org/10.1088/0026-1394/28/3/018
  12. Test Facility for LED Road Lighting, LED Demonstration Test & Measurement Center, KOPTI, http://ldc.kopti.re.kr
  13. KRISS/SP-2010-105, Guide to the Expression of Uncertainty in Measurement (KRISS, 2010).
  14. S. Park, D.-H. Lee, Y.-W. Kim, and S.-N. Park, "Uncertainty evaluation of color measurement on light sources and display devices," Korean J. Opt. Photon. (Hankook Kwanghak Hoeji) 20, 110-117 (2009). https://doi.org/10.3807/HKH.2009.20.2.110
  15. S. Park, D.-H. Lee, Y.-W. Kim, and S.-N. Park, "Uncertainty evaluation for the spectroradiometric measurement of the averaged light-emitting diode intensity," Appl. Opt. 46, 2851-8 (2007). https://doi.org/10.1364/AO.46.002851
  16. D.-J. Shin, S. Park, K.-L. Jeong, S.-N. Park, and D.-H. Lee, "High-accuracy measurement of linearity of optical detectors based on flux addition of LEDs in an integrating sphere," Metrologia 51, 25 (2014). https://doi.org/10.1088/0026-1394/51/1/25
  17. R. Goebel and M. Stock, "Nonlinearity and polarization effects in silicon trap detectors," Metrologia 35, 413 (1998). https://doi.org/10.1088/0026-1394/35/4/33