DOI QR코드

DOI QR Code

Effects of Dietary Corticosterone on Yolk Colors and Eggshell Quality in Laying Hens

  • Kim, Yeon-Hwa (Division of Applied Life Sciences (BK21 Plus program), Gyeongsang National University) ;
  • Kim, Jimin (Division of Applied Life Sciences (BK21 Plus program), Gyeongsang National University) ;
  • Yoon, Hyung-Sook (Division of Applied Life Sciences (BK21 Plus program), Gyeongsang National University) ;
  • Choi, Yang-Ho (Department of Animal Science, Gyeongsang National University)
  • Received : 2014.11.03
  • Accepted : 2015.01.19
  • Published : 2015.06.01

Abstract

The objective of this study was to investigate the effects of dietary corticosterone on egg quality. For 2 weeks hens received either control or experimental diet containing corticosterone at 30 mg/kg diet. Feed intake and egg production were monitored daily, and body weight measured weekly. Egg weights and egg quality were measured daily. Corticosterone treatment resulted in a remarkable increase in feed intake and sharp decrease in egg production compared with control (p<0.05) whereas body weight remained unchanged. Decreased albumen height, but no changes in egg weight, led to decreased Haugh unit (p<0.05). Corticosterone caused elevated eggshell thickness (p<0.05) without altering weight and strength, suggesting possible changes in shell structure. Yolk color and redness were increased by corticosterone (p<0.05) but lightness and yellowness were either not changed or inconsistent over the time period of measurements. Increased concentrations in plasma were also found for corticosterone, glucose, cholesterol, creatinine, uric acid, albumin, aspartate aminotransferase, creatine kinase, lactate dehydrogenase, total protein, and amylase (p<0.05), suggesting that corticosterone increased protein breakdown, renal dysfunctions and pancreatitis. Together, the current results imply that dietary corticosterone affects egg quality such as yolk colors and shell thickness, in addition to its effects on feed intake and egg production.

Keywords

References

  1. Bar, A., E. Vax, W. Hunziker, O. Halevy, and S. Striem. 1996. The role of gonadal hormones in gene expression of calbindin (Mr 28,000) in the laying hen. Gen. Comp. Endocrinol. 103:115-122. https://doi.org/10.1006/gcen.1996.0100
  2. Bartov, I. 1982. Corticosterone and fat deposition in broiler chicks: effect of injection time, breed, sex and age. Br. Poult. Sci. 23:161-170. https://doi.org/10.1080/00071688208447942
  3. Bartov, I., L. S. Jensen, and J. R. Veltmann, Jr. 1980. Effect of corticosterone and prolactin on fattening in broiler chicks. Poult. Sci. 59:1328-1334. https://doi.org/10.3382/ps.0591328
  4. Bellamy, D. and R. A. Leonard. 1965. Effect of cortisol on the growth of chicks. Gen. Comp. Endocrinol. 5:402-410. https://doi.org/10.1016/0016-6480(65)90100-0
  5. Carsia, R. V. and S. Harvey. 2000. Chapter 19. Adrenals In: Sturkie's Avian Physiology, Fifth Edn, (Ed. G. C. Whittow). Academic Press, San Diego, CA, USA. pp. 489-537.
  6. Davami, A., M. J. Wineland, W. T. Jones, R. L. Ilardi, and R. A. Peterson. 1987. Effects of population size, floor space, and feeder space upon productive performance, external appearance, and plasma corticosterone concentration of laying hens. Poult. Sci. 66:251-257. https://doi.org/10.3382/ps.0660251
  7. Delezie, E., Q. Swennen, J. Buyse, and E. Decuypere. 2007. The effect of feed withdrawal and crating density in transit on metabolism and meat quality of broilers at slaughter weight. Poult. Sci. 86:1414-1423. https://doi.org/10.1093/ps/86.7.1414
  8. Dong, H., H. Lin, H. C. Jiao, Z. G. Song, J. P. Zhao, and K. J. Jiang. 2007. Altered development and protein metabolism in skeletal muscles of broiler chickens (Gallus gallus domesticus) by corticosterone. Comp. Biochem. Physiol. Part A Mole Integr. Physiol. 147:189-195. https://doi.org/10.1016/j.cbpa.2006.12.034
  9. Downing, J. A. and W. L. Bryden. 2008. Determination of corticosterone concentrations in egg albumen: A non-invasive indicator of stress in laying hens. Physiol. Behav. 95:381-387. https://doi.org/10.1016/j.physbeh.2008.07.001
  10. El-lethey, H., T. W. Jungi, and B. Huber-Eicher. 2001. Effects of feeding corticosterone and housing conditions on feather pecking in laying hens (Gallus gallus domesticus). Physiol. Behav. 73:243-251. https://doi.org/10.1016/S0031-9384(01)00475-9
  11. Eriksen, M. S., A. Haug, P. A. Torjesen, and M. Bakken. 2003. Prenatal exposure to corticosterone impairs embryonic development and increases fluctuating asymmetry in chickens (Gallus gallus domesticus). Br. Poult. Sci. 44:690-697. https://doi.org/10.1080/00071660310001643660
  12. Gudev, D., S. Popova-Ralcheva, I. Yanchev, P. Moneva, E. Petkov, and M. Ignatova. 2011. Effect of betaine on egg performance and some blood constituents in laying hens reared indoor under natural summer temperatures and varying levels of air ammonia. Bulgarian J. Agric. Sci. 17:859-866.
  13. Hammershoj, M., U. Kidmose, and S. Steenfeldt. 2010. Deposition of carotenoids in egg yolk by short-term supplement of coloured carrot (Daucus carota) varieties as forage material for egg-laying hens. J. Sci. Food Agric. 90:1163-1171. https://doi.org/10.1002/jsfa.3937
  14. Haugh, R. R. 1937. A new method for determining the quality of an egg. U.S. Egg and Poult Mag 39:27-49.
  15. Hayirli, A., N. Esenbuga, M. Macit, E. Lacin, M. Karaoglu, H. Karaca, and L. Yildiz. 2005. Nutrition practice to alleviate the adverse effects of stress on laying performance, metabolic profile, and egg quality in peak producing hens: I. The humate supplementation. Asian Australas. J. Anim. Sci. 18:1310-1319. https://doi.org/10.5713/ajas.2005.1310
  16. Hayward, L. S. and J. C. Wingfield. 2004. Maternal corticosterone is transferred to avian yolk and may alter offspring growth and adult phenotype. Gen. Comp. Endocrinol. 135:365-371. https://doi.org/10.1016/j.ygcen.2003.11.002
  17. Henriksen, R., T. G. Groothuis, and S. Rettenbacher. 2011. Elevated plasma corticosterone decreases yolk testosterone and progesterone in chickens: Linking maternal stress and hormone-mediated maternal effects. PloS one 6(8):e23824. https://doi.org/10.1371/journal.pone.0023824
  18. Hoffmann, W. E. and P. F. Solter. 2008. Chapter 12 - Diagnostic Enzymology of Domestic Animals. In: Clinical Biochemistry of Domestic Animals, Sixth Edn, (Eds. J. J. Kaneko, J. W. Harvey, and M. L. Bruss). Academic Press, San Diego, CA, USA. pp. 351-378.
  19. Jiang, K. J., H. C. Jiao, Z. G. Song, L. Yuan, J. P. Zhao, and H. Lin. 2008. Corticosterone administration and dietary glucose supplementation enhance fat accumulation in broiler chickens. Br. Poult. Sci. 49:625-631. https://doi.org/10.1080/00071660802337241
  20. Keim, V., N. Teich, F. Fiedler, W. Hartig, G. Thiele, and J. Mossner. 1998. A comparison of lipase and amylase in the diagnosis of acute pancreatitis in patients with abdominal pain. Pancreas. 16:45-9. https://doi.org/10.1097/00006676-199801000-00008
  21. Kim, J. and Y. H. Choi. 2014. Differential abundance of egg white proteins in laying hens treated with corticosterone. J. Agric. Food Chem. 62:12346-12359. https://doi.org/10.1021/jf504469t
  22. Klasing, K. C., D. E. Laurin, R. K. Peng, and D. M. Fry. 1987. Immunologically mediated growth depression in chicks: influence of feed intake, corticosterone and interleukin-1. J Nutr 117:1629-1637. https://doi.org/10.1093/jn/117.9.1629
  23. Klingensmith, P. M., P. Y. Hester, and E. K. Wilson. 1984. Relationship of plasma corticosterone and adrenal cholesterol and corticosterone to the production of soft-shelled and shellless eggs. Poult. Sci. 63:1841-1845. https://doi.org/10.3382/ps.0631841
  24. Koelkebeck, K. W. and J. R. Cain. 1984. Performance, behavior, plasma corticosterone, and economic returns of laying hens in several management alternatives. Poult. Sci. 63:2123-2131. https://doi.org/10.3382/ps.0632123
  25. Lavelin, I., N. Yarden, S. Ben-Bassat, A. Bar, and M. Pines. 1998. Regulation of osteopontin gene expression during egg shell formation in the laying hen by mechanical strain. Matrix Biol. 17:615-623. https://doi.org/10.1016/S0945-053X(98)90112-3
  26. Lin, H., D. De Vos, E. Decuypere, and J. Buyse. 2008. Dynamic changes in parameters of redox balance after mild heat stress in aged laying hens (Gallus gallus domesticus). Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 147:30-35. https://doi.org/10.1016/j.cbpc.2007.07.005
  27. Lin, H., E. Decuypere, and J. Buyse. 2004a. Oxidative stress induced by corticosterone administration in broiler chickens (Gallus gallus domesticus): 1. Chronic exposure. Comp. Biochem. Physiol. Part B Biochem. Mole Biol. 139:737-744. https://doi.org/10.1016/j.cbpc.2004.09.013
  28. Lin, H., E. Decuypere, and J. Buyse. 2004b. Oxidative stress induced by corticosterone administration in broiler chickens (Gallus gallus domesticus): 2. Short-term effect. Comp. Biochem. Physiol. Part B Biochem. Mole Biol. 139:745-751. https://doi.org/10.1016/j.cbpc.2004.09.014
  29. Lin, H., S. J. Sui, H. C. Jiao, J. Buyse, and E. Decuypere. 2006. Impaired development of broiler chickens by stress mimicked by corticosterone exposure. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 143:400-405. https://doi.org/10.1016/j.cbpa.2005.12.030
  30. Liu, L., Z. Song, A. Sheikhahmadi, H. Jiao, and H. Lin. 2012. Effect of corticosterone on gene expression of feed intake regulatory peptides in laying hens. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 162:81-87. https://doi.org/10.1016/j.cbpb.2012.04.005
  31. Love, O. P., E. H. Chin, K. E. Wynne-Edwards, and T. D. Williams. 2005. Stress hormones: A link between maternal condition and sex-biased reproductive investment. Am. Nat. 166:751-766. https://doi.org/10.1086/497440
  32. Love, O. P., K. E. Wynne-Edwards, L. Bond, and T. D. Williams. 2008. Determinants of within- and among-clutch variation in yolk corticosterone in the European starling. Horm. Behav. 53:104-111. https://doi.org/10.1016/j.yhbeh.2007.09.007
  33. Lumeij, J. T. 2008. Chapter 28 - Avian Clinical Biochemistry. In: Clinical Biochemistry of Domestic Animals, Sixth Edn, (Eds. J. J. Kaneko, J. W. Harvey, and M. L. Bruss). Academic Press, San Diego, CA, USA. pp. 839-872.
  34. Ma, X., Y. Lin, H. Zhang, W. Chen, S. Wang, D. Ruan, and Z. Jiang. 2014. Heat stress impairs the nutritional metabolism and reduces the productivity of egg-laying ducks. Anim. Reprod. Sci. 145:182-190. https://doi.org/10.1016/j.anireprosci.2014.01.002
  35. Mack, L. A., J. N. Felver-Gant, R. L. Dennis, and H. W. Cheng. 2013. Genetic variations alter production and behavioral responses following heat stress in 2 strains of laying hens. Poult. Sci. 92:285-294. https://doi.org/10.3382/ps.2012-02589
  36. Mashaly, M. M., G. L. Hendricks, 3rd, M. A. Kalama, A. E. Gehad, A. O. Abbas, and P. H. Patterson. 2004. Effect of heat stress on production parameters and immune responses of commercial laying hens. Poult. Sci. 83:889-894. https://doi.org/10.1093/ps/83.6.889
  37. Mumma, J. O., J. P. Thaxton, Y. Vizzier-Thaxton, and W. L. Dodson. 2006. Physiological stress in laying hens. Poult. Sci. 85:761-769. https://doi.org/10.1093/ps/85.4.761
  38. Nicol, P. C. J., S. N. Brown, E. Glen, S. J. Pope, F. J. Short, P. D. Warriss, P. H. Zimmerman, and L. J. Wilkins. 2006. Effects of stocking density, flock size and management on the welfare of laying hens in single-tier aviaries. Br. Poult. Sci. 47:135-146. https://doi.org/10.1080/00071660600610609
  39. Onbasilar, E. E. and F. T. Aksoy. 2005. Stress parameters and immune response of layers under different cage floor and density conditions. Livest. Prod. Sci. 95:255-263. https://doi.org/10.1016/j.livprodsci.2005.01.006
  40. Palmer, L. S. 1915. Xanthophyll, the principal natural yellow pigment of the egg yolk, body fat, and blood serum of the hen. The physiological relation of the pigment to the xanthophyll of plants. J. Biol. Chem. 23:261-279.
  41. Pilo, B., R. J. Etches, and J. C. George. 1985. Effects of corticosterone infusion on the lipogenic activity and ultrastructure of the liver of laying hens. Cytobios 44:273-285.
  42. Pitk, M., V. Tilgar, P. Kilgas, and R. Mand. 2012. Acute stress affects the corticosterone level in bird eggs: A case study with great tits (Parus major). Horm. Behav. 62:475-479. https://doi.org/10.1016/j.yhbeh.2012.08.004
  43. Puvadolpirod, S. and J. P. Thaxton. 2000. Model of physiological stress in chickens 1. Response parameters. Poult. Sci. 79:363-369. https://doi.org/10.1093/ps/79.3.363
  44. Roberson, K. D., J. L. Kalbfleisch, W. Pan, and R. A. Charbeneau. 2005. Effect of corn distiller's dried grains with solubles at various levels on performance of laying hens and egg yolk color. Int. J. Poult. Sci. 4:44-51. https://doi.org/10.3923/ijps.2005.44.51
  45. Rories, C., C. K. Lau, K. Fink, and T. C. Spelsberg. 1989. Rapid inhibition of c-myc gene expression by a glucocorticoid in the avian oviduct. Mol. Endocrinol. (Baltimore, Md.) 3:991-1001. https://doi.org/10.1210/mend-3-6-991
  46. Rubolini, D., M. Romano, G. Boncoraglio, R. P. Ferrari, R. Martinelli, P. Galeotti, M. Fasola, and N. Saino. 2005. Effects of elevated egg corticosterone levels on behavior, growth, and immunity of yellow-legged gull (Larus michahellis) chicks. Horm. Behav. 47:592-605. https://doi.org/10.1016/j.yhbeh.2005.01.006
  47. Saino, N., M. Romano, R. P. Ferrari, R. Martinelli, and A. P. Moller. 2005. Stressed mothers lay eggs with high corticosterone levels which produce low-quality offspring. J. Exp. Zool. Part A Comp. Exp. Biol. 303:998-1006.
  48. Scanes, C. G. 2009. Perspectives on the endocrinology of poultry growth and metabolism. Gen. Comp. Endocrinol. 163:24-32. https://doi.org/10.1016/j.ygcen.2009.04.013
  49. Schmidt, J. B., R. M. Andree, K. A. Davis, S. M. Treese, and D. G. Satterlee. 2009. Influence of maternal corticosterone treatment on incubation length of eggs laid by Japanese quail hens selected for divergent adrenocortical stress responsiveness. Br. Poult. Sci. 50:739-747. https://doi.org/10.1080/00071660903317571
  50. Shini, S., P. Kaiser, A. Shini, and W. L. Bryden. 2008. Biological response of chickens (Gallus gallus domesticus) induced by corticosterone and a bacterial endotoxin. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 149:324-333. https://doi.org/10.1016/j.cbpb.2007.10.003
  51. Shini, S., A. Shini, and G. R. Huff. 2009. Effects of chronic and repeated corticosterone administration in rearing chickens on physiology, the onset of lay and egg production of hens. Physiol. Behav. 98:73-77. https://doi.org/10.1016/j.physbeh.2009.04.012
  52. Siegel, H. S. and M. Van Kampen. 1984. Energy relationships in growing chickens given daily injections of corticosterone. Br. Poult. Sci. 25:477-485. https://doi.org/10.1080/00071668408454889
  53. Sundaresan, N. R., D. Anish, K. V. H. Sastry, V. K. Saxena, J. Mohan, and K. A. Ahmed. 2007. Cytokines in reproductive remodeling of molting White Leghorn hens. J. Reprod. Immunol. 73:39-50. https://doi.org/10.1016/j.jri.2006.05.001
  54. Thaxton, J. P., W. A. Dozier, 3rd, S. L. Branton, G. W. Morgan, D. W. Miles, W. B. Roush, B. D. Lott, and Y. Vizzier-Thaxton. 2006. Stocking density and physiological adaptive responses of broilers. Poult. Sci. 85:819-824. https://doi.org/10.1093/ps/85.5.819
  55. Yuan, L., H. Lin, K. J. Jiang, H. C. Jiao, and Z. G. Song. 2008. Corticosterone administration and high-energy feed results in enhanced fat accumulation and insulin resistance in broiler chickens. Br. Poult. Sci. 49:487-495. https://doi.org/10.1080/00071660802251731

Cited by

  1. Deterioration of eggshell quality in laying hens experimentally infected with H9N2 avian influenza virus vol.47, pp.1, 2016, https://doi.org/10.1186/s13567-016-0322-4
  2. Dietary betaine supplementation increases adrenal expression of steroidogenic acute regulatory protein and yolk deposition of corticosterone in laying hens vol.96, pp.12, 2017, https://doi.org/10.3382/ps/pex241
  3. Effect of dietary supplementation with Rhizopus oryzae or Chrysonilia crassa on growth performance, blood profile, intestinal microbial population, and carcass traits in broilers exposed to heat stres vol.60, pp.3, 2015, https://doi.org/10.5194/aab-60-347-2017
  4. Egg production and egg quality in free-range laying hens housed at different outdoor stocking densities vol.96, pp.9, 2015, https://doi.org/10.3382/ps/pex107
  5. Relationships Between Rearing Enrichments, Range Use, and an Environmental Stressor for Free-Range Laying Hen Welfare vol.7, pp.None, 2015, https://doi.org/10.3389/fvets.2020.00480
  6. An Acute, Rather Than Progressive, Increase in Temperature-Humidity Index Has Severe Effects on Mortality in Laying Hens vol.7, pp.None, 2015, https://doi.org/10.3389/fvets.2020.568093
  7. The Influence of Sex on the Slaughter Parameters and Selected Blood Indices of Greenleg Partridge, Polish Native Breed of Hens vol.11, pp.2, 2015, https://doi.org/10.3390/ani11020517
  8. Quercetin as an antiviral agent inhibits the Pseudorabies virus in vitro and in vivo vol.305, pp.None, 2015, https://doi.org/10.1016/j.virusres.2021.198556
  9. Utilization of Shredded Steam-Exploded Pine Particles as a Dietary Ingredient to Modify Cecal Microbiota in Broilers vol.11, pp.12, 2021, https://doi.org/10.3390/agriculture11121196