초록
실환경에서는 비래염분 뿐만 아니라 자외선, 산성비, 산업공해 부유 물질 등의 여러 가지 복합 열화요소에 노출되어 있어 강재가 발청(發錆)하는 임계 비래염분량을 찾기에 어려움이 있다. 본 연구에서는 비래염분 시뮬레이터를 사용하여 인위적으로 비래염분 부착량을 조절하였으며 강재 마감별 5종을 대상으로 부식촉진 시험을 실시하였다. 그 결과 NC, UC, RLC-1, SS201에 각각 0.58~0.73, 7.89~8.46, 57.95~69.48, $80.73{\sim}89.35mg/dm^2$의 비래염분량을 부착시켰을 때 발청하는 것을 확인할 수 있었으며, 발청 후 부식속도는 각각 1.60, 0.36, 0.97, 0.17로 NC가 가장 빠른 부식속도를 가지는 것으로 평가 되었다.
Many studies have investigated the airborne chlorides that can weaken the overall durability of the concrete structures due to the corrosion of steel materials, but most of the studies have aimed to examine weathering by exposing various construction materials to the actual oceanic environment. However, with the exposure test, it was difficult to find the threshold of precise corrosive amount of airborne chlorides due to diverse deteriorating environmental factors such as ultraviolet ray, acid rain, floating material from industrial pollution as well as airborne chlorides. Therefore, in this study, an airborne chloride simulator was set up, in oder to conduct a corrosion accelerating test for steels coated by five different finishing materials. As results, it was found that the corrosion began to be observed at $0.58{\sim}0.73mg/dm^2$ for no-coated steel, at $7.89{\sim}8.46mg/dm^2$for urethane-coated steel, at $57.95{\sim}69.48mg/dm^2$ for red lead-coated steel, and at $80.73{\sim}89.35mg/dm^2$ for stainless-coated steel, respectively. Hence, these specific data can be considered as the threshold ranges of corrosion for each coating material for steel.