참고문헌
- Adomavicius, G. and Tuzhilin, A. (2005), Toward the next generation of recommender systems : A survey of the state-of-the-art and possible extensions, Knowledge and Data Engineering, IEEE Transactions on, 17(6), 734-749. https://doi.org/10.1109/TKDE.2005.99
- Ansari, A., Essegaier, S., and Kohli, R. (2000), Internet recommendation systems, Journal of Marketing research, 37(3), 363-375. https://doi.org/10.1509/jmkr.37.3.363.18779
- Barrichelo, V. M. O., Heuer, R. J., Dean, C. M., and Sataloff, R. T. (2001), Comparison of singer's formant, speaker's ring, and LTA spectrum among classical singers and untrained normal speakers, Journal of voice, 15(3), 344-350. https://doi.org/10.1016/S0892-1997(01)00036-4
- Beel, J., Langer, S., Genzmehr, M., Gipp, B., Breitinger, C., and Nurnberger, A. (2013), Research paper recommender system evaluation : a quantitative literature survey, In Proceedings of the International Workshop on Reproducibility and Replication in Recommender Systems Evaluation, 15-22.
- Bobadilla, J., Ortega, F., Hernando, A., and Gutierrez, A. (2013), Recommender systems survey, Knowledge-Based Systems, 46, 109-132. https://doi.org/10.1016/j.knosys.2013.03.012
- Breese, J. S., Heckerman, D., and Kadie, C. (1998), Empirical analysis of predictive algorithms for collaborative filtering, In Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence, 43-52.
- Bu, J., Tan, S., Chen, C., Wang, C., Wu, H., Zhang, L., and He, X. (2010), Music recommendation by unified hypergraph : combining social media information and music content, In Proceedings of the international conference on Multimedia, 391-400.
- Celma, O. (2010), Music recommendation and discovery : The long tail, long fail, and long play in the digital music space : Springer.
- Celma, O. and Serra, X. (2008), FOAFing the music : Bridging the semantic gap in music recommendation, Web Semantics : Science, Services and Agents on the World Wide Web, 6(4), 250-256. https://doi.org/10.1016/j.websem.2008.09.004
- Chee, S. H. S., Han, J., and Wang, K. (2001), Rectree : An efficient collaborative filtering method, In Data Warehousing and Knowledge Discovery, 141-151.
- Chen, H. C. and Chen, A. L. (2005), A music recommendation system based on music and user grouping, Journal of Intelligent Information Systems, 24(2/3), 113-132. https://doi.org/10.1007/s10844-005-0319-3
- Cheng, B. and Titterington, D. M. (1994), Neural networks : A review from a statistical perspective, Statistical science, 2-30.
- Good, N., Schafer, J. B., Konstan, J. A., Borchers, A. I., Sarwar, B., Herlocker, J., and Riedl, J. (1999), Combining collaborative filtering with personal agents for better recommendations, In AAAI/IAAI, 439-446.
- Guyon, I. (1991), Applications of neural networks to character recognition, International Journal of Pattern Recognition and Artificial Intelligence, 5(01n02), 353-382. https://doi.org/10.1142/S021800149100020X
- Han, J., Kamber, M., and Pei, J. (2006), Data mining : concepts and techniques : Morgan kaufmann.
- Herlocker, J. L., Konstan, J. A., Terveen, L. G., and Riedl, J. T. (2004), Evaluating collaborative filtering recommender systems, ACM Transactions on Information Systems (TOIS), 22(1), 5-53. https://doi.org/10.1145/963770.963772
- Hotta, H. and Hagiwara, M. (2007), User profiling system using social networks for recommendation, In Proceedings of International Symposium on Advanced Intelligent Systems, 207-274.
- Hull, G. P., Hutchison, T. W., and Strasser, R. (2011), The Music Business and Recording Industry : Delivering Music in the 21st Century : Taylor and Francis.
- Iaquinta, L., De Gemmis, M., Lops, P., Semeraro, G., Filannino, M., and Molino, P. (2008), Introducing serendipity in a content-based recommender system, In Hybrid Intelligent Systems, HIS Eighth International Conference on, 168-173.
- Im, Y., Jung, E. S., and Park, S. (2008), Development of an ergonomic product development process reflecting quantified customer preference, Journal of the Korean Institute of Industrial Engineers, 34(1), 66-78.
- Kang, Y. and Bae, J. (2013), Customized web search rank provision, Journal of the Korean Institute of Industrial Engineers, 39(2), 119-128. https://doi.org/10.7232/JKIIE.2013.39.2.119
- Kim, B. M., Li, Q., Kim, J. W., and Kim, J. (2004), A new collaborative recommender system addressing three problems, In PRICAI : Trends in Artificial Intelligence, 495-504.
- Kordumova, S., Kostadinovska, I., Barbieri, M., Pronk, V., and Korst, J. (2010), Personalized implicit learning in a music recommender system, In 18th International Conference, UMAP, 351-362.
- Leong, T. W., Vetere, F., and Howard, S. (2012), Experiencing coincidence during digital music listening, ACM Transactions on Computer-Human Interaction (TOCHI), 19(1), 6.
- Li, Q., Myaeng, S. H., Guan, D. H., and Kim, B. M. (2005), A probabilistic model for music recommendation considering audio features, In Information retrieval technology, 72-83.
- Liu, N. H., Hsieh, S. J., and Tsai, C. F. (2010), An intelligent music playlist generator based on the time parameter with artificial neural networks, Expert Systems with Applications, 37(4), 2815-2825. https://doi.org/10.1016/j.eswa.2009.09.009
- Lops, P., de Gemmis, M., and Semeraro, G. (2011), Content-based recommender systems: State of the art and trends, Recommender Systems Handbook, 73-105.
- Magno, T. and Sable, C. (2008), A Comparison of Signal Based Music Recommendation to Genre Labels, Collaborative Filtering, Musicological Analysis, Human Recommendation and Random Baseline, In ISMIR, 161-166.
- McNee, S. M., Riedl, J., and Konstan, J. A. (2006), Being accurate is not enough : how accuracy metrics have hurt recommender systems, In CHI extended abstracts on Human factors in computing systems, 1097-1101.
- Passant, A. and Raimond, Y. (2008), Combining Social Music and Semantic Web for music-related recommender systems, In The 7th International Semantic Web Conference, 19.
- Pu, P., Chen, L., and Hu, R. (2012), Evaluating recommender systems from the user's perspective : survey of the state of the art, User Modeling and User-Adapted Interaction, 22(4-5), 317-355. https://doi.org/10.1007/s11257-011-9115-7
- Russell, S. J. and Norvig, P. (2009), Artificial intelligence : a modern approach, Prentice Hall.
- Sarwar, B., Karypis, G., Konstan, J. A., and Riedl, J. (2000), Application of dimensionality reduction in recommender system-a case study : DTIC Document.
- Sarwar, B., Karypis, G., Konstan, J. A., and Riedl, J. (2001), Item-based collaborative filtering recommendation algorithms, In Proceedings of the 10th international conference on World Wide Web, 285-295.
- Song, Y., Dixon, S., and Pearce, M. (2012), A survey of music recommendation systems and future perspectives, In 9th international symposium on computer music modelling and retrieval (CMMR 2012), 19-22.
- Stumpf, S. and Muscroft, S. (2011), When users generate music playlists : When words leave off, music begins? In Multimedia and Expo (ICME), 2011 IEEE International Conference on, 1-6.
- Swearingen, K. and Sinha, R. (2001), Beyond algorithms : An HCI perspective on recommender systems, In ACM SIGIR 2001 Workshop on Recommender Systems, 393-408.
- Tintarev, N. and Masthoff, J. (2011), Designing and evaluating explanations for recommender systems, Recommender Systems Handbook, 479-510.
- Uitdenbogerd, A. L. and van Schyndel, R. G. (2002), A Review of Factors Affecting Music Recommender Success, In ISMIR, 2, 204-208.
- Ward, M. K., Goodman, J. K., and Irwin, J. R. (2013), The same old song : The power of familiarity in music choice, Marketing Letters, 1-11.
- Wilson, T. D. (2009), Know thyself, Perspectives on Psychological Science, 4(4), 384-389. https://doi.org/10.1111/j.1745-6924.2009.01143.x
- Yoshii, K., Goto, M., Komatani, K., Ogata, T., and Okuno, H. G. (2006), Hybrid Collaborative and Content-based Music Recommendation Using Probabilistic Model with Latent User Preferences, In ISMIR, 6, 7th.
- Zhang, Y. C., Seaghdha, D. O., Quercia, D., and Jambor, T. (2012), Auralist : introducing serendipity into music recommendation, In Proceedings of the fifth ACM international conference on Web search and data mining, 13-22.