Acknowledgement
Supported by : Australian Research Council
References
- Achenbach, J.D. (2000), "Quantitative nondestructive evaluation", Int J. Solids Struct., 37, 13-27. https://doi.org/10.1016/S0020-7683(99)00074-8
- Alleyne, D., Pavlakovic, B., Lowe, M. and Cawley, P. (2001), "Rapid, long range inspection of chemical plant pipework using guided waves", Insight, 43(2), 93-96.
- Belanger, P. and Cawley, P. (2009), "Feasibility of low frequency straight-ray guided wave tomography", NDT and E Int., 42(2), 113-119. https://doi.org/10.1016/j.ndteint.2008.10.006
- Belanger, P., Cawley, P. and Simonetti, F. (2010), "Guided wave diffraction tomography within the Born approximation", IEEE Trans. Ultra. Ferr. Freq. Cont., 57(6), 1405-1418. https://doi.org/10.1109/TUFFC.2010.1559
- Carden, E.P. and Fanning, P. (2004), "Vibration based condition monitoring: a review", Struct. Hlth. Monit., 3, 355-377. https://doi.org/10.1177/1475921704047500
- Chan, E., Wang, C.H. and Rose, F.L.R. (2014), "Characterization of laminar damage in an aluminum panel by diffraction tomogxraphy based imaging method using Lamb waves", 7th European Workshop on Structural Health Monitoring, Nantes, France.
- Farrar, C.R. and Worden, K. (2007), "An introduction to structural health monitoring", Phil. Trans. R. Soc. A., 365, 303-315. https://doi.org/10.1098/rsta.2006.1928
- Graff, K.F. (1991), Wave Motion in Elastic Solids, Dover Publications Inc., New York, United States.
- Huthwaite, P. and Simonetti, F. (2013), "High-resolution guided wave tomography", Wave Motion, 50(5), 979-993. https://doi.org/10.1016/j.wavemoti.2013.04.004
- Jansen, D.P. and Hutchins, D.A. (1990), "Lamb wave tomography", IEEE Ultrasonics Symposium Proceedings, Honolulu, HI, December, 1017-1020.
- Kishimoto, K., Inoue, H., Hamada, M. and Shibuya, T. (1995), "Time frequency analysis of dispersive waves by means of wavelet transform", J. Appl. Mech., 62, 841-848. https://doi.org/10.1115/1.2896009
- Lam, H.F., Ng, C.T. and Leung, A.Y.T. (2008), "Multicrack detection on semirigidly connected beams utilizing dynamic data", J. Eng. Mech., ASCE, 134(1), 90-99. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:1(90)
- Leonard, K.R. and Hinder, M.K. (2005), "Lamb wave tomography of pipe-like structures", Ultrasonics, 43, 574-583. https://doi.org/10.1016/j.ultras.2004.12.006
- Leonard, K.R., Malyarenko, E.V. and Hinders, M.K. (2002), "Ultrasonic Lamb wave tomography", Inver. Probl., 18(6), 1795-1808. https://doi.org/10.1088/0266-5611/18/6/322
- Lin, X. and Yuan, F.G. (2001), "Damage detection of a plate using migration technique", J. Intel. Mater. Syst. Struct., 12(7), 469-482. https://doi.org/10.1177/10453890122145276
- Malyarenko, E.V. and Hinders, M.K. (2000), "Fan beam and double crosshole Lamb wave tomography for mapping flows in aging aircraft structures", J. Acoust. Soc. Am., 108(4), 1631-1639. https://doi.org/10.1121/1.1289663
- Malyarenko, E.V. and Hinders, M.K. (2001), "Ultrasonic Lamb wave diffraction tomography", Ultrasonics, 39(4), 269-281. https://doi.org/10.1016/S0041-624X(01)00055-5
- Ng, C.T. (2014), "Bayesian model updating approach for experimental identification of damage ion beams using guided waves", Struct. Hlth. Monit., 13, 359-373. https://doi.org/10.1177/1475921714532990
- Ng, C.T. (2014), "On the selection of advanced signal processing techniques for guided wave damage identification using a statistical approach", Eng. Struct., 67, 50-60. https://doi.org/10.1016/j.engstruct.2014.02.019
- Ng, C.T. and Veidt, M. (2009), "A Lamb-wave-based technique for damage detection in composite laminates", Smart Mater. Struct., 18(7), 1-12.
- Ng, C.T. and Veidt, M. (2012), "Scattering characteristics of Lamb waves from debondings at structural features in composite laminates", J. Acoust. Soc. Am., 132(1), 115-123. https://doi.org/10.1121/1.4728192
- Ng, C.T., Veidt, M. and Lam, H.F. (2009a), "Guided wave damage characterization in beams utilizing probabilistic optimization", Eng. Struct., 31(12), 2842-2850. https://doi.org/10.1016/j.engstruct.2009.07.009
- Ng, C.T., Veidt, M. and Rajic, N. (2009b), "Integrated piezoceramic transducers for imaging damage in composite laminates", Proceedings of SPIE, 7493M, 1-8.
- Ng, C.T., Veidt, M. Rose, L.R.F. and Wang, C.H. (2012), "Analytical and finite element prediction of Lamb wave scattering at delaminations in quasi-isotropic composite laminates", J. Sound Vib., 331(22), 4870-4883. https://doi.org/10.1016/j.jsv.2012.06.002
- Rohde, A.H., Rose, L.R.F., Veidt, M. and Homer, J. (2008), "A computer simulation study of imaging flexural inhomogeneities using plate wave diffraction tomography", Ultrasonics, 48, 6-15. https://doi.org/10.1016/j.ultras.2007.09.002
- Rohde, A.H., Rose, L.R.F., Viedt, M. and Wang, C.H. (2009), "Two inversion strategies for plate wave diffraction tomography", Mater. Forum, 33, 489-495.
- Rose, J.L. (2002), "A baseline and vision of ultrasonic guided wave inspection potential", J. Press. Ves. Tech., 124, 273-282. https://doi.org/10.1115/1.1491272
- Rose, L.R. and Wang, C.H. (2010), "Mindlin plate theory for damage detection: imaging of flexural inhomogeneities", J. Acoust. Soc. Am., 127(2), 754-763. https://doi.org/10.1121/1.3277217
- Rose, L.R.F. and Wang, C.H. (2004), "Mindlin plate theory for damage detection: source solutions", J. Acoust. Soc. Am., 116, 154-171. https://doi.org/10.1121/1.1739482
- Veidt, M, Ng, C.T., Hames, S. and Wattinger, T. (2008), "Imaging laminar damage in plates using Lamb wave beamforming", Adv. Mater. Res., 47(50), 666-669.
- Veidt, M. and Ng, C.T. (2011), "Influence of stacking sequence on scattering characteristics of the fundamental anti-symmetric Lamb wave at through holes in composite laminates", J. Acoust. Soc. Am., 129(3), 1280-1287. https://doi.org/10.1121/1.3533742
- Virrmani, Y.P. (2002), Corrosion Costs and Preventive Strategies in the United States, Technical Brief, FHWA-RD-01-156, Federal Highway Administration, U.S. Department of Transportation, Washington, DC.
- Wang, C.H. and Chang, F.K. (2005), "Scattering of plate waves by a cylindrical inhomogeneity", J. Sound Vib., 282, 429-451. https://doi.org/10.1016/j.jsv.2004.02.023
- Wang, C.H. and Rose, L.R.F. (2003), "Plate-wave diffraction tomography for structural health monitoring", Rev. Quant. Nondestr. Eval., 22, 1615-1622.
- Wang, C.H. and Rose, L.R.F. (2013), "Minimum sensor density for quantitative damage imaging", 9th Int. Workshop on Struct. health Monitoring, Stanford, USA.
- Wang, C.H., Rose, J.T. and Chang, F.K. (2004), "A synthetic time-reversal imaging method for structural health monitoring", Smart Mater. Struct., 13, 415-423. https://doi.org/10.1088/0964-1726/13/2/020
Cited by
- Scattering of the fundamental anti-symmetric Lamb wave at through-thickness notches in isotropic plates vol.6, pp.3, 2016, https://doi.org/10.1007/s13349-016-0166-7
- Locating delaminations in laminated composite beams using nonlinear guided waves vol.131, 2017, https://doi.org/10.1016/j.engstruct.2016.11.010
- Rayleigh wave propagation and scattering characteristics at debondings in fibre-reinforced polymer-retrofitted concrete structures 2018, https://doi.org/10.1177/1475921718754371
- Mode conversion and scattering analysis of guided waves at delaminations in laminated composite beams vol.2, pp.3, 2015, https://doi.org/10.12989/smm.2015.2.3.213
- A probabilistic approach for quantitative identification of multiple delaminations in laminated composite beams using guided waves vol.127, 2016, https://doi.org/10.1016/j.engstruct.2016.08.052
- Quantitative damage imaging using Lamb wave diffraction tomography vol.25, pp.12, 2016, https://doi.org/10.1088/1674-1056/25/12/124304
- Modelling and analysis of nonlinear guided waves interaction at a breathing crack using time-domain spectral finite element method vol.26, pp.8, 2017, https://doi.org/10.1088/1361-665X/aa75f3
- Effect of central and non-central frequency components on the quality of damage imaging vol.8, pp.1, 2018, https://doi.org/10.1007/s13349-017-0258-z
- Higher harmonic generation of guided waves at delaminations in laminated composite beams vol.16, pp.4, 2017, https://doi.org/10.1177/1475921716673021
- Second harmonic generation at fatigue cracks by low-frequency Lamb waves: Experimental and numerical studies vol.99, 2018, https://doi.org/10.1016/j.ymssp.2017.07.011
- A baseline-free and non-contact method for detection and imaging of structural damage using 3D laser vibrometry vol.24, pp.4, 2017, https://doi.org/10.1002/stc.1894
- Guided wave-based identification of multiple cracks in beams using a Bayesian approach vol.84, 2017, https://doi.org/10.1016/j.ymssp.2016.07.013
- The influence of the initial stresses on Lamb wave dispersion in pre-stressed PZT/Metal/PZT sandwich plates vol.58, pp.2, 2016, https://doi.org/10.12989/sem.2016.58.2.347
- Bolted joint integrity monitoring with second harmonic generated by guided waves pp.1741-3168, 2018, https://doi.org/10.1177/1475921718814399
- Higher harmonic generation of Rayleigh wave at debondings in FRP-retrofitted concrete structures vol.27, pp.10, 2018, https://doi.org/10.1088/1361-665X/aad674
- Second Harmonic Generation of Guided Wave at Crack-Induced Debonding in FRP-Strengthened Metallic Plates pp.1793-6764, 2018, https://doi.org/10.1142/S0219455419400066
- Rayleigh wave for detecting debonding in FRP-retrofitted concrete structures using piezoelectric transducers vol.20, pp.5, 2015, https://doi.org/10.12989/cac.2017.20.5.583
- Influence of crack opening and incident wave angle on second harmonic generation of Lamb waves vol.27, pp.5, 2015, https://doi.org/10.1088/1361-665x/aab867
- Damage detection of a thin plate using pseudo local flexibility method vol.15, pp.5, 2015, https://doi.org/10.12989/eas.2018.15.5.463
- Large acoustoelastic effect for Lamb waves propagating in an incompressible elastic plate vol.145, pp.3, 2015, https://doi.org/10.1121/1.5092604
- Damage detection of a thin plate using modal curvature via macrostrain measurement vol.18, pp.2, 2019, https://doi.org/10.1007/s11803-019-0512-y
- An Inverse Approach of Damage Identification Using Lamb Wave Tomography vol.19, pp.9, 2019, https://doi.org/10.3390/s19092180
- Delamination imaging in laminated composite plates using 2D wavelet analysis of guided wavefields vol.30, pp.1, 2021, https://doi.org/10.1088/1361-665x/abc66b
- Sensor Networks for Structures Health Monitoring: Placement, Implementations, and Challenges-A Review vol.4, pp.3, 2015, https://doi.org/10.3390/vibration4030033
- A combined global-local approach for delamination assessment of composites using vibrational frequencies and FBGs vol.167, pp.no.pb, 2022, https://doi.org/10.1016/j.ymssp.2021.108577