DOI QR코드

DOI QR Code

모델 콜타르 유분 중에 함유된 질소고리화합물의 추출에 관한 메탄올과 포름아마이드의 비교

Comparison of Methanol with Formamide on Extraction of Nitrogen Heterocyclic Compounds Contained in Model Coal Tar Fraction

  • Kim, Su Jin (Department of Cosmetic Science, Chungwoon University)
  • 투고 : 2015.01.07
  • 심사 : 2015.01.29
  • 발행 : 2015.04.10

초록

모델 콜타르 유분 중에 함유된 질소고리화합물(NHC)의 분리를 메탄올과 포름아마이드 추출에 의해 비교했다. 원료로서는 4종류의 NHC (NHCs : 퀴놀린, 이소퀴놀린, 인돌, 퀴날딘), 3종류의 2환 방향족 화합물(BACs : 1-메틸나프탈렌, 2-메틸나프탈렌, 디메틸나프탈렌), 비페닐과 페닐에테르로 제조한 모델 콜타르 유분을 사용했다. 용매로서는 메탄올과 포름아마이드 수용액을 사용했다. 원료와 용매의 접촉 장치로서는 회분 교반기를 사용했다. 사용한 용매와 무관하게, 초기 용매 함수율의 감소와 평형조작 온도의 상승은 NHCs의 분배계수를 급격히 증가시켰으나, 역으로 BACs를 기준한 NHCs의 선택도를 감소시켰다. 초기 용매/원료의 체적비가 감소함에 따라 NHCs의 분배계수는 감소했으나, BACs를 기준한 NHCs의 선택도는 거의 일정했다. 동일한 실험조건에서, NHCs의 분배계수는 메탄올 추출이 포름아마이드 추출에 비해 약 3~5배 높았으나, BACs를 기준한 NHCs의 선택도는 역으로 포름아마이드 추출이 메탄올 추출에 비해 3~7배 높았다. 또한, NHCs의 용해력과 선택도의 밸런스에 NHCs의 추출처리속도를 부가하여 두 용매 추출법을 비교했다.

The separation of nitrogen heterocyclic compound (NHC) contained in a model coal tar fraction was compared by the methanol and formamide extraction. The model coal tar fraction comprising four kinds of NHC (NHCs : quinoline, iso-quinoline, indole, quinaldine) and three kinds of bicyclic aromatic compound (BACs : 1-methylnaphthalene, 2-methylnaphthalene, dimethylnaphthalene), biphenyl and phenyl ether was used as a raw material. The aqueous solution of methanol and formamide were used as solvents. A batch-stirred tank was used as the raw material - a solvent contact unit of this work. Independent of the solvent used, the distribution coefficient of NHCs sharply increased by decreasing the initial volume ratio of water to the solvent and increasing the equilibrium operation temperature, whereas, the selectivity of NHCs in reference to BACs decreased. Decreasing the initial volume ratio of solvent to feed resulted in deteriorating distribution coefficients, but the selectivity of NHCs in reference to BAC was almost the constant. The distribution coefficient of NHCs by the methanol extraction was 3~5 times higher than that of NHCs by the formamide extraction, inversely, the selectivity of NHCs based on BACs by the formamide extraction was 3~7 times higher than that of NHCs by the methanol extraction. Furthermore, two different solvent extraction methods by adding the extraction processing speed to the balance between solvency and selectivity of NHCs were compared.

키워드

참고문헌

  1. I. Uemasu, Effect of methanol-water mixture solvent on concentration of indole in coal tar using a-cyclodextrin as complexing agent, Sekiyu Gakkaishi, 34, 371-374 (1991). https://doi.org/10.1627/jpi1958.34.371
  2. K. Ukegawa, A. Matsumura, Y. Kodera, T. Kondo, T. Nakayama, H. Tanabe, S. Yoshida, and Y. Mito, Solvent extraction of nitrogen compounds from a coal tar fraction (Part I) Effect of extraction conditions on the extraction rate and the selectivities of nitrogen compounds, Sekiyu Gakkaishi, 33, 250-254 (1990). https://doi.org/10.1627/jpi1958.33.250
  3. R. Egashira and M. Nagai, Separation of nitrogen heterocyclic compounds contained in coal tar absorption oil fraction by solvent extraction, Sekiyu Gakkaishi, 43, 339-345 (2000). https://doi.org/10.1627/jpi1958.43.339
  4. R. Egashira and C. Salim, Solvent extraction of nitrogen heterocyclic compounds contained in coal tar absorption oil fraction-. Improvement of separation performance by addition of aluminum chloride to solvent, Sekiyu Gakkaishi, 44, 178-182 (2001). https://doi.org/10.1627/jpi1958.44.178
  5. Y. Kodera, K. Ukegawa, Y. Mito, M. Komoto, E. Ishikawa, and T. Nagayama, Solvent extraction of nitrogen compounds from coal liquids, Fuel, 70, 765-769 (1991). https://doi.org/10.1016/0016-2361(91)90076-M
  6. S. J. Kim and Y. J. Chun, Separation of nitrogen heterocyclic compounds from model coal tar fraction by solvent extraction, Sep. Sci. Techno., 40, 2095-2109 (2005). https://doi.org/10.1081/SS-200068488
  7. S. J. Kim, H. C. Kang, Y. S. Kim, and H. J. Jeong, Liquid membrane permeation of nitrogen heterocyclic compounds contained in model coal tar fraction, Bull. Korean Chem. Soc., 31, 1143-1148 (2010). https://doi.org/10.5012/bkcs.2010.31.5.1143
  8. S. J. Kim, Y. J. Chun, and H. J. Jeong, Separation and recovery of indole from model coal tar fraction by batch cocurrent 5 stages equilibrium extraction, J. Korean Ind. Eng. Chem., 18, 168-172 (2007).
  9. S. J. Kim and H. C. Kang, Methanol Extraction of Nitrogen Heterocyclic Compound Contained in Model Coal Tar Fraction of Nine Components System, Appl. Chem. Eng., 25, 142-146 (2014). https://doi.org/10.14478/ace.2013.1110
  10. I. Uemasu and T. Nakayama, Concentration of indole in coal tar using $\alpha$-cyclodextrin as the host for inclusion complexation, J. Inclus. Phenom. Molec. Recogn. Chem., 7, 327-331 (1989). https://doi.org/10.1007/BF01076986
  11. I. Mochida, Y. Q. Fei, and K. Sakanishi, Capture and recovery of basic nitrogen species in coal tar pitch, using nickel sulfate as adsorbent, Chem. Lett., 515-518 (1990).
  12. Y. Yamamoto, Y. Sato, T. Ebina, C. Yokoyama, S. Takahasi, Y. Mito, H. Tanabe, N. Nishiguchi, and K. Nagaoka, Separation of high purity indole from coal tar by high pressure crystallization, Fuel, 70, 565-566 (1991). https://doi.org/10.1016/0016-2361(91)90039-D
  13. S. J. Kim, H. C. Kang, and H. J. Jeong, High-purity purification of indole contained in coal tar fraction-Separation of close boiling mixtures of indole by solute crystallization, Appl. Chem. Eng., 21, 238-241 (2010).
  14. S. J. Kim, High-Purity Purification of Indole Contained in Coal Tar Absorption Oil by Extraction-Distillation-Crystallization Combination, Appl. Chem. Eng., 25, 330-336 (2014). https://doi.org/10.14478/ace.2014.1042