DOI QR코드

DOI QR Code

Effects of Acid Treatment of SAPO-34 on the Catalytic Lifetime and Light Olefin Selectivity during DTO Reaction

DTO 반응에서 촉매수명과 경질 올레핀 선택도에 미치는 SAPO-34의 산 처리 효과

  • Choi, Ki-Hwan (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lee, Dong-Hee (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Kim, Hyo-Sub (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Park, Chu-Sik (Hydrogen and fuel cell department, Korea Institute of Energy Research) ;
  • Kim, Young-Ho (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 최기환 (충남대학교 정밀응용화학과) ;
  • 이동희 (충남대학교 정밀응용화학과) ;
  • 김효섭 (충남대학교 정밀응용화학과) ;
  • 박주식 (한국에너지기술연구원 수소연료전지연구단) ;
  • 김영호 (충남대학교 정밀응용화학과)
  • Received : 2015.02.11
  • Accepted : 2015.03.10
  • Published : 2015.04.10

Abstract

Effects of the post-acid treatment of SAPO-34 sample by hydrochloric acid were investigated to enhance the catalytic performance in DTO reaction. Uniformly sized SAPO-34 samples with cubic-like morphology were prepared by hydrothermal method using TEAOH and DEA as the structure directing agents. It was modified in terms of the HCl concentration and treating time. As a result, the total surface area and micropore volume for the well modified samples increased and the total acid site was somewhat decreased along with the erosion of the external surface. Especially, the catalytic lifetime and light olefins selectivity for acid treated SAPO-0.2 M (3 h) samples were considerably enhanced compared with those of untreated SAPO-34 samples. It indicates that the deactivation by coke formation proceeds mainly at the pore entrance on the external surface. Therefore, the acid treatment was confirmed to be a simple method which can significantly improve the catalytic performance by modifying the external surface of SAPO-34 catalyst.

DTO (dimethyl ether to olefin) 반응에서 촉매 성능을 향상하기 위하여 염산에 의한 SAPO-34 시료의 산 처리 영향을 연구했다. 먼저 TEAOH (tetraethylammonium hydroxide)와 DEA (diethylamine)를 구조유도제로 사용하여 정육면체 형태를 갖는 균일한 크기의 SAPO-34 시료를 수열 합성했다. 제조된 촉매는 염산의 농도 및 처리 시간을 변수로 하여 개조되었다. 그 결과, 우수하게 개조된 시료는 외부 표면의 침식과 함께 총 비표면적 및 마이크로 세공부피가 증가하였으며, 산점량이 다소 감소하는 것으로 나타났다. 특히, 개조된 SAPO-0.2 M (3 h) 시료 상에서의 DTO 반응에서 촉매 수명과 경질 올레핀 선택성은 모체 SAPO-34 시료와 비교하여 크게 향상되었다. 이것은 코크 형성에 의한 비활성화가 주로 결정 외부 표면의 기공 입구에서 상대적으로 빠르게 진행된다는 것을 의미한다. 따라서 산 처리는 SAPO-34 촉매의 외부 표면을 개조함으로써 촉매의 성능을 향상할 수 있는 단순한 방법임을 확인했다.

Keywords

References

  1. T. Ren, M. K. Patel, and K. Blok, Steam cracking and methane to olefins: Energy use $CO_{2}$ emissions and production costs, Energy, 33, 817-833 (2008).
  2. T. Ren, M. K. Patel, and K. Blok, Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes, Energy, 31, 425-451 (2006). https://doi.org/10.1016/j.energy.2005.04.001
  3. M. Stocker, Methanol-to-hydrocarbons: catalytic materials and their behavior, Micropor. Mesopor. Mater., 29, 3-48 (1999). https://doi.org/10.1016/S1387-1811(98)00319-9
  4. F. J. Keil, Methanol-to-hydrocarbons: process technology, Micropor. Mesopor. Mater., 29, 49-66 (1999). https://doi.org/10.1016/S1387-1811(98)00320-5
  5. J. Q. Chen, A. Bozzano, B. Glover, T. Fuglerud, and S. Kvisle, Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process, Catal. Today, 106, 103-107 (2005). https://doi.org/10.1016/j.cattod.2005.07.178
  6. D. Das, D. Ravichandran, and D. K. Chakrabarty, Conversion of syngas to light olefins over silicalite-1 supported iron and cobalt catalysts: effect of manganese addition, Catal. Today, 36, 285-293 (1997). https://doi.org/10.1016/S0920-5861(96)00227-1
  7. J. Y. Park, Y. J. Lee, K. W. Jun, J. W. Bae, N. Viswanadham, and Y. H. Kim, Direct conversion of synthesis gas to light olefins using dual bed reactor, J. Ind. Eng. Chem., 15, 847-853 (2009). https://doi.org/10.1016/j.jiec.2009.09.011
  8. A. A. Mirzaei, R. Habibpour, and E. Kashi, Preparation and optimization of mixed iron cobalt oxide catalysts for conversion of synthesis gas to light olefins, Appl. Catal. A: Gen., 296, 222-231 (2005). https://doi.org/10.1016/j.apcata.2005.08.033
  9. A. Karimi, R. Ahmadi, H. R. B. Zadeh, A. J. Jolodar, and A. Barkhordarion, Catalytic oxidative coupling of methane-experimental investigation and optimization of operational conditions, Petroleum and Coal, 49, 36-40 (2007).
  10. N. Yaghobi and M. H. R. Ghoreishy, Oxidative coupling of methane in a fixed bed reactor over perovskite catalyst: A simulation study using experimental kinetic model, J. Nat. Gas Chem., 17, 8-16 (2008). https://doi.org/10.1016/S1003-9953(08)60019-5
  11. T. A. Semelsberger, R. L. Borup, and H. L. Greene, Dimethyl ether (DME) as an alternative fuel, J. Power Sources, 156, 497-511 (2006). https://doi.org/10.1016/j.jpowsour.2005.05.082
  12. E. M. Jang, Y. S. Baek, and Y. S. Oh, A study on the catalyst for the synthesis of DME with hydrogen energy density, Trans. Korean Hydrogen New Energy Soc., 19, 445-452 (2008).
  13. W. Song, D. M. Marcus, H. Fu, J. O. Ehresmann, and J. F. Haw, An off-studied reaction that may never have been: Direct catalytic conversion of methanol or dimethyl ether to hydrocarbons on the solid acids HZSM-5 or HSAPO-34, J. Am. Chem. Soc., 124, 3844-3845 (2002). https://doi.org/10.1021/ja016499u
  14. Z. Jie, C. Yu, N. Zeeshan, W. Yao, and W. Fei, In situ synthesis of SAPO-34 zeolites in kaolin microspheres for a fluidized methanol or dimethyl ether to olefins process, Chin. J. Chem. Eng., 18, 979-987 (2010). https://doi.org/10.1016/S1004-9541(09)60156-7
  15. T. S. Ko and G. Seo, Methanol conversion over SAPO-34 molecular sieve catalyst, Korean Chem. Eng. Res., 28, 163-171 (1990).
  16. B. Parlitz, E. Schreier, H. L. Zubowa, R. Eckelt, E. Lieske, G. Lischke, and R. Fricke, Isomerization of n-Heptane over Pd-Loaded Silico-Alumino-Phosphate molecular sieves, J. Catal., 155, 1-11 (1995). https://doi.org/10.1006/jcat.1995.1182
  17. M. Popova, C. Minchev, and V. Kanazirev, Methanol conversion to light alkenes over SAPO-34 molecular sieves synthesized using various sources of silicon and aluminium, Appl. Catal. A: Gen., 169, 227-235 (1998). https://doi.org/10.1016/S0926-860X(98)00003-9
  18. Y. J. Lee, S. C. Baek, and K. W. Jun, Methanol conversion on SAPO-34 catalysts prepared by mixed template method, Appl. Catal. A: Gen., 329, 130-136 (2007). https://doi.org/10.1016/j.apcata.2007.06.034
  19. G. Seo and B. G. Min, Mechanism of methanol conversion over zeolite and molecular sieve catalysts, Korean Chem. Eng. Res., 44, 329-339 (2006).
  20. J. F. Haw, W. Song, D. M. Marcus, and J. B. Nicholas, The mechanism of methanol to hydrocarbon catalysis, Acc. Chem. Res., 36, 317-326 (2003). https://doi.org/10.1021/ar020006o
  21. J. F. Haw and D. M. Marcus, Well-defined (supra)molecular structures in zeolite methanol-to-olefin catalysis, Topics Catal., 34, 41-48 (2005). https://doi.org/10.1007/s11244-005-3798-0
  22. L. E. Kitaev, Z. M. Bukina, V. V. Yushchenko, and N. S. Nesterenko, Structure and catalytic properties of dealuminated modified zeolites Y, Petrol. Chem., 46, 428-434 (2006). https://doi.org/10.1134/S0965544106060089
  23. D. Verboekend, G. Vile, and J. Perez-Ramirez, Hierarchical Y and USY zeolites designed by post-synthetic strategies, Adv. Funct. Mater., 22, 916-928 (2012). https://doi.org/10.1002/adfm.201102411
  24. L. Xiaoling, W. Yan, W. Xujin, Z. Yafei, G. Yanjun, X. Qinghu, X. Jun, D. Feng, and D. Tao, Characterization and catalytic performance in n-hexane cracking of HEU-1 zeolites dealuminated using hydrochloric acid and hydrothermal treatments, Chin. J. Catal., 33, 1889-1900 (2012). https://doi.org/10.1016/S1872-2067(11)60454-3
  25. Z. Yan, D. Ma, J. Zhuang, X. Liu, X. Liu, X. Han, X. Bao, F. Cang, L. Xu, and Z. Liu, On the acid-dealumination of USY zeolite: a solid state NMR investigation, J. Mol. Catal. A: Chem., 194, 153-167 (2003). https://doi.org/10.1016/S1381-1169(02)00531-9
  26. S. Moreno and G. Poncelet, Dealumination of small- and large-port mordenites: a comparative study, Micropor. Mater., 12, 197-222 (1997). https://doi.org/10.1016/S0927-6513(97)00067-9
  27. M. Muller, G. Harvey, and R. Prins, Comparison of the dealumination of zeolites beta, mordenite, ZSM-5 and ferrierite by thermal treatment, leaching with oxalic acid and treatment with $SiCl_{4}$ by $^{1}H$, $^{29}Si$ and $^{27}Al$ MAS NMR, Micropor. Mesopor. Mater., 34, 135-147 (2000). https://doi.org/10.1016/S1387-1811(99)00167-5
  28. S. G. Lee, B. K. Yoo, H. S. Je, T. G. Ryu, C. S. Park, and Y. H. Kim, The study on DME (dimethyl ether) conversion over the supported SAPO-34 catalyst, Trans. Korean Hydrogen New Energy Soc., 22, 232-239 (2011).
  29. A. T. Aguaro, A. G. Gayubo, A. Atutxa, M. Olazar, and J. Bilbao, Regeneration of a catalyst based on a SAPO-34 used in the transformation of methanol into olefins, J. Chem. Technol. Biotechnol., 74, 1082-1088 (1999). https://doi.org/10.1002/(SICI)1097-4660(199911)74:11<1082::AID-JCTB141>3.0.CO;2-D
  30. P. Wang, D. Yang, J. Hu, J. Xu, and G. Lu, Synthesis of SAPO-34 with small and tunable crystallite size by two-step hydrothermal crystallization and its catalytic performance for MTO reaction, Catal. Today, 212, 62.e1-62.e8 (2013).
  31. F. M. Shalmani, R. Halladj, and S. Askari, Effect of contributing factors on microwave-assisted hydrothermal synthesis of nanosized SAPO-34 molecular sieves, Powder Technol., 221, 395-402 (2012). https://doi.org/10.1016/j.powtec.2012.01.036
  32. N. Nishiyama, M. Kawaguchi, Y. Hirota, D. V. Vu, Y. Egashira, and K. Ueyama, Size control of SAPO-34 crystals and their catalyst in the methanol-to-olefin reaction, Appl. Catal. A: Gen., 362, 193-199 (2009). https://doi.org/10.1016/j.apcata.2009.04.044
  33. H. S. Kim, S. G. Lee, Y. H. Kim, D. H. Lee, J. B. Lee, and C. S. Park, Improvement of lifetime using transition metal-incorporated SAPO-34 catalysts in conversion of dimethyl ether to light olefins, J. Nanomater., 2013, 1-9 (2013).
  34. K. Hemelsoet, A. Nollet, M. Vandichel, D. Lesthaeghe, V. V. Speybroeck, and M. Waroquier, The effect of confined space on the growth of naphthalenic species in a chabazite-type catalyst: A molecular modeling study, Chem. Cat. Chem., 1, 373-378 (2009).
  35. J. Li, Y. Wei, G. Liu, Y. Qi, P. Tian, B. Li, Y. He, and Z. Liu, Comparative study of MTO conversion over SAPO-34, H-ZSM-5 and H-ZSM-22: Correlating catalytic performance and reaction mechanism to zeolite topology, Catal. Today, 171, 221-228 (2011). https://doi.org/10.1016/j.cattod.2011.02.027
  36. V. V. Speybroeck, K. Hemelsoet, K. de Wispelaere, Q. Qian, J. van der Mynsbrugge, B. de Sterck, B. M. Weckhuysen, and M. Waroquier, Mechanistic studies on chabazite-type methanol- to-olefin catalysts: Insights from time-resolved UV/Vis Microspectroscopy combined with theoretical simulations, Chem. Cat. Chem., 5, 173-184 (2013).
  37. D. Chen, K. Moljord, and A. Holmen, A methanol to olefins review: Diffusion, coke formation and deactivation on SAPO type catalysts, Micropor. Mesopor. Mater., 164, 239-250 (2012). https://doi.org/10.1016/j.micromeso.2012.06.046
  38. S. G. Lee, H. S. Kim, Y. H. Kim, E. J. Kang, D. H. Lee, and C. S. Park, Dimethyl ether conversion to light olefins over the SAPO-34/$ZrO_{2}$ composite catalysts with high lifetime, J. Ind. Eng. Chem., 20, 61-67 (2014). https://doi.org/10.1016/j.jiec.2013.04.026
  39. A. Izadbakhsh, F. Farhadi, F. Khorasheh, S. Sahebdelfar, M. Asadi, and Z. F. Yan, Key parameters in hydrothermal synthesis and characterization of low silicon content SAPO-34 molecular sieve, Micropor. Mesopor. Mater., 126, 1-7 (2009). https://doi.org/10.1016/j.micromeso.2008.12.009
  40. A. K. Sinha and S. Seelan, Characterization of SAPO-11 and SAPO-31 synthesized from aqueous and non-aqueous media, Appl. Catal. A: Gen., 270, 245-252 (2004). https://doi.org/10.1016/j.apcata.2004.05.013
  41. G. Liu, P. Tian, Y. Zhang, J. Li, L. Xu, S. Meng, and Z. Liu, Synthesis of SAPO-34 templated by diethylamine: Crystallization process and Si distribution in the crystals, Micropor. Mesopor. Mater., 114, 416-423 (2008). https://doi.org/10.1016/j.micromeso.2008.01.030
  42. E. J. Kang, D. H. Lee, H. S. Kim, K. H. Choi, C. S. Park, and Y. H. Kim, Conversion of DME to light olefins over mesoporous SAPO-34 catalyst preparation by carbon nanotube template, Appl. Chem. Eng., 25, 34-40 (2014). https://doi.org/10.14478/ace.2013.1093
  43. T. Alvaro-Munoz, C. Marquez-Alvarez, and E. Sastre, Use of different templates on SAPO-34 synthesis: Effect on the acidity and catalytic activity in the MTO reaction, Catal. Today, 179, 27-34 (2012). https://doi.org/10.1016/j.cattod.2011.07.038

Cited by

  1. DTO 반응에 미치는 SAPO-34 촉매의 식각 처리 효과 vol.32, pp.1, 2015, https://doi.org/10.14478/ace.2020.1091