References
-
T. Ren, M. K. Patel, and K. Blok, Steam cracking and methane to olefins: Energy use
$CO_{2}$ emissions and production costs, Energy, 33, 817-833 (2008). - T. Ren, M. K. Patel, and K. Blok, Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes, Energy, 31, 425-451 (2006). https://doi.org/10.1016/j.energy.2005.04.001
- M. Stocker, Methanol-to-hydrocarbons: catalytic materials and their behavior, Micropor. Mesopor. Mater., 29, 3-48 (1999). https://doi.org/10.1016/S1387-1811(98)00319-9
- F. J. Keil, Methanol-to-hydrocarbons: process technology, Micropor. Mesopor. Mater., 29, 49-66 (1999). https://doi.org/10.1016/S1387-1811(98)00320-5
- J. Q. Chen, A. Bozzano, B. Glover, T. Fuglerud, and S. Kvisle, Recent advancements in ethylene and propylene production using the UOP/Hydro MTO process, Catal. Today, 106, 103-107 (2005). https://doi.org/10.1016/j.cattod.2005.07.178
- D. Das, D. Ravichandran, and D. K. Chakrabarty, Conversion of syngas to light olefins over silicalite-1 supported iron and cobalt catalysts: effect of manganese addition, Catal. Today, 36, 285-293 (1997). https://doi.org/10.1016/S0920-5861(96)00227-1
- J. Y. Park, Y. J. Lee, K. W. Jun, J. W. Bae, N. Viswanadham, and Y. H. Kim, Direct conversion of synthesis gas to light olefins using dual bed reactor, J. Ind. Eng. Chem., 15, 847-853 (2009). https://doi.org/10.1016/j.jiec.2009.09.011
- A. A. Mirzaei, R. Habibpour, and E. Kashi, Preparation and optimization of mixed iron cobalt oxide catalysts for conversion of synthesis gas to light olefins, Appl. Catal. A: Gen., 296, 222-231 (2005). https://doi.org/10.1016/j.apcata.2005.08.033
- A. Karimi, R. Ahmadi, H. R. B. Zadeh, A. J. Jolodar, and A. Barkhordarion, Catalytic oxidative coupling of methane-experimental investigation and optimization of operational conditions, Petroleum and Coal, 49, 36-40 (2007).
- N. Yaghobi and M. H. R. Ghoreishy, Oxidative coupling of methane in a fixed bed reactor over perovskite catalyst: A simulation study using experimental kinetic model, J. Nat. Gas Chem., 17, 8-16 (2008). https://doi.org/10.1016/S1003-9953(08)60019-5
- T. A. Semelsberger, R. L. Borup, and H. L. Greene, Dimethyl ether (DME) as an alternative fuel, J. Power Sources, 156, 497-511 (2006). https://doi.org/10.1016/j.jpowsour.2005.05.082
- E. M. Jang, Y. S. Baek, and Y. S. Oh, A study on the catalyst for the synthesis of DME with hydrogen energy density, Trans. Korean Hydrogen New Energy Soc., 19, 445-452 (2008).
- W. Song, D. M. Marcus, H. Fu, J. O. Ehresmann, and J. F. Haw, An off-studied reaction that may never have been: Direct catalytic conversion of methanol or dimethyl ether to hydrocarbons on the solid acids HZSM-5 or HSAPO-34, J. Am. Chem. Soc., 124, 3844-3845 (2002). https://doi.org/10.1021/ja016499u
- Z. Jie, C. Yu, N. Zeeshan, W. Yao, and W. Fei, In situ synthesis of SAPO-34 zeolites in kaolin microspheres for a fluidized methanol or dimethyl ether to olefins process, Chin. J. Chem. Eng., 18, 979-987 (2010). https://doi.org/10.1016/S1004-9541(09)60156-7
- T. S. Ko and G. Seo, Methanol conversion over SAPO-34 molecular sieve catalyst, Korean Chem. Eng. Res., 28, 163-171 (1990).
- B. Parlitz, E. Schreier, H. L. Zubowa, R. Eckelt, E. Lieske, G. Lischke, and R. Fricke, Isomerization of n-Heptane over Pd-Loaded Silico-Alumino-Phosphate molecular sieves, J. Catal., 155, 1-11 (1995). https://doi.org/10.1006/jcat.1995.1182
- M. Popova, C. Minchev, and V. Kanazirev, Methanol conversion to light alkenes over SAPO-34 molecular sieves synthesized using various sources of silicon and aluminium, Appl. Catal. A: Gen., 169, 227-235 (1998). https://doi.org/10.1016/S0926-860X(98)00003-9
- Y. J. Lee, S. C. Baek, and K. W. Jun, Methanol conversion on SAPO-34 catalysts prepared by mixed template method, Appl. Catal. A: Gen., 329, 130-136 (2007). https://doi.org/10.1016/j.apcata.2007.06.034
- G. Seo and B. G. Min, Mechanism of methanol conversion over zeolite and molecular sieve catalysts, Korean Chem. Eng. Res., 44, 329-339 (2006).
- J. F. Haw, W. Song, D. M. Marcus, and J. B. Nicholas, The mechanism of methanol to hydrocarbon catalysis, Acc. Chem. Res., 36, 317-326 (2003). https://doi.org/10.1021/ar020006o
- J. F. Haw and D. M. Marcus, Well-defined (supra)molecular structures in zeolite methanol-to-olefin catalysis, Topics Catal., 34, 41-48 (2005). https://doi.org/10.1007/s11244-005-3798-0
- L. E. Kitaev, Z. M. Bukina, V. V. Yushchenko, and N. S. Nesterenko, Structure and catalytic properties of dealuminated modified zeolites Y, Petrol. Chem., 46, 428-434 (2006). https://doi.org/10.1134/S0965544106060089
- D. Verboekend, G. Vile, and J. Perez-Ramirez, Hierarchical Y and USY zeolites designed by post-synthetic strategies, Adv. Funct. Mater., 22, 916-928 (2012). https://doi.org/10.1002/adfm.201102411
- L. Xiaoling, W. Yan, W. Xujin, Z. Yafei, G. Yanjun, X. Qinghu, X. Jun, D. Feng, and D. Tao, Characterization and catalytic performance in n-hexane cracking of HEU-1 zeolites dealuminated using hydrochloric acid and hydrothermal treatments, Chin. J. Catal., 33, 1889-1900 (2012). https://doi.org/10.1016/S1872-2067(11)60454-3
- Z. Yan, D. Ma, J. Zhuang, X. Liu, X. Liu, X. Han, X. Bao, F. Cang, L. Xu, and Z. Liu, On the acid-dealumination of USY zeolite: a solid state NMR investigation, J. Mol. Catal. A: Chem., 194, 153-167 (2003). https://doi.org/10.1016/S1381-1169(02)00531-9
- S. Moreno and G. Poncelet, Dealumination of small- and large-port mordenites: a comparative study, Micropor. Mater., 12, 197-222 (1997). https://doi.org/10.1016/S0927-6513(97)00067-9
-
M. Muller, G. Harvey, and R. Prins, Comparison of the dealumination of zeolites beta, mordenite, ZSM-5 and ferrierite by thermal treatment, leaching with oxalic acid and treatment with
$SiCl_{4}$ by$^{1}H$ ,$^{29}Si$ and$^{27}Al$ MAS NMR, Micropor. Mesopor. Mater., 34, 135-147 (2000). https://doi.org/10.1016/S1387-1811(99)00167-5 - S. G. Lee, B. K. Yoo, H. S. Je, T. G. Ryu, C. S. Park, and Y. H. Kim, The study on DME (dimethyl ether) conversion over the supported SAPO-34 catalyst, Trans. Korean Hydrogen New Energy Soc., 22, 232-239 (2011).
- A. T. Aguaro, A. G. Gayubo, A. Atutxa, M. Olazar, and J. Bilbao, Regeneration of a catalyst based on a SAPO-34 used in the transformation of methanol into olefins, J. Chem. Technol. Biotechnol., 74, 1082-1088 (1999). https://doi.org/10.1002/(SICI)1097-4660(199911)74:11<1082::AID-JCTB141>3.0.CO;2-D
- P. Wang, D. Yang, J. Hu, J. Xu, and G. Lu, Synthesis of SAPO-34 with small and tunable crystallite size by two-step hydrothermal crystallization and its catalytic performance for MTO reaction, Catal. Today, 212, 62.e1-62.e8 (2013).
- F. M. Shalmani, R. Halladj, and S. Askari, Effect of contributing factors on microwave-assisted hydrothermal synthesis of nanosized SAPO-34 molecular sieves, Powder Technol., 221, 395-402 (2012). https://doi.org/10.1016/j.powtec.2012.01.036
- N. Nishiyama, M. Kawaguchi, Y. Hirota, D. V. Vu, Y. Egashira, and K. Ueyama, Size control of SAPO-34 crystals and their catalyst in the methanol-to-olefin reaction, Appl. Catal. A: Gen., 362, 193-199 (2009). https://doi.org/10.1016/j.apcata.2009.04.044
- H. S. Kim, S. G. Lee, Y. H. Kim, D. H. Lee, J. B. Lee, and C. S. Park, Improvement of lifetime using transition metal-incorporated SAPO-34 catalysts in conversion of dimethyl ether to light olefins, J. Nanomater., 2013, 1-9 (2013).
- K. Hemelsoet, A. Nollet, M. Vandichel, D. Lesthaeghe, V. V. Speybroeck, and M. Waroquier, The effect of confined space on the growth of naphthalenic species in a chabazite-type catalyst: A molecular modeling study, Chem. Cat. Chem., 1, 373-378 (2009).
- J. Li, Y. Wei, G. Liu, Y. Qi, P. Tian, B. Li, Y. He, and Z. Liu, Comparative study of MTO conversion over SAPO-34, H-ZSM-5 and H-ZSM-22: Correlating catalytic performance and reaction mechanism to zeolite topology, Catal. Today, 171, 221-228 (2011). https://doi.org/10.1016/j.cattod.2011.02.027
- V. V. Speybroeck, K. Hemelsoet, K. de Wispelaere, Q. Qian, J. van der Mynsbrugge, B. de Sterck, B. M. Weckhuysen, and M. Waroquier, Mechanistic studies on chabazite-type methanol- to-olefin catalysts: Insights from time-resolved UV/Vis Microspectroscopy combined with theoretical simulations, Chem. Cat. Chem., 5, 173-184 (2013).
- D. Chen, K. Moljord, and A. Holmen, A methanol to olefins review: Diffusion, coke formation and deactivation on SAPO type catalysts, Micropor. Mesopor. Mater., 164, 239-250 (2012). https://doi.org/10.1016/j.micromeso.2012.06.046
-
S. G. Lee, H. S. Kim, Y. H. Kim, E. J. Kang, D. H. Lee, and C. S. Park, Dimethyl ether conversion to light olefins over the SAPO-34/
$ZrO_{2}$ composite catalysts with high lifetime, J. Ind. Eng. Chem., 20, 61-67 (2014). https://doi.org/10.1016/j.jiec.2013.04.026 - A. Izadbakhsh, F. Farhadi, F. Khorasheh, S. Sahebdelfar, M. Asadi, and Z. F. Yan, Key parameters in hydrothermal synthesis and characterization of low silicon content SAPO-34 molecular sieve, Micropor. Mesopor. Mater., 126, 1-7 (2009). https://doi.org/10.1016/j.micromeso.2008.12.009
- A. K. Sinha and S. Seelan, Characterization of SAPO-11 and SAPO-31 synthesized from aqueous and non-aqueous media, Appl. Catal. A: Gen., 270, 245-252 (2004). https://doi.org/10.1016/j.apcata.2004.05.013
- G. Liu, P. Tian, Y. Zhang, J. Li, L. Xu, S. Meng, and Z. Liu, Synthesis of SAPO-34 templated by diethylamine: Crystallization process and Si distribution in the crystals, Micropor. Mesopor. Mater., 114, 416-423 (2008). https://doi.org/10.1016/j.micromeso.2008.01.030
- E. J. Kang, D. H. Lee, H. S. Kim, K. H. Choi, C. S. Park, and Y. H. Kim, Conversion of DME to light olefins over mesoporous SAPO-34 catalyst preparation by carbon nanotube template, Appl. Chem. Eng., 25, 34-40 (2014). https://doi.org/10.14478/ace.2013.1093
- T. Alvaro-Munoz, C. Marquez-Alvarez, and E. Sastre, Use of different templates on SAPO-34 synthesis: Effect on the acidity and catalytic activity in the MTO reaction, Catal. Today, 179, 27-34 (2012). https://doi.org/10.1016/j.cattod.2011.07.038
Cited by
- DTO 반응에 미치는 SAPO-34 촉매의 식각 처리 효과 vol.32, pp.1, 2015, https://doi.org/10.14478/ace.2020.1091