DOI QR코드

DOI QR Code

Embedment Properties of Reflective Beads for Thermoplastic Road Markings

열가소성 차선도장에서 반사유리알의 함침특성

  • Hong, In Kwon (Department of Chemical Engineering, Dankook University) ;
  • Lee, Chang Geun (Department of Chemical Engineering, Dankook University) ;
  • Lee, Seung Bum (Department of Chemical Engineering, Dankook University)
  • Received : 2015.01.29
  • Accepted : 2015.03.09
  • Published : 2015.04.10

Abstract

Thermoplastic road markings are one of the most widely used road markings in the world. However, the durability of domestic road markings is relatively shorter than that of the global average of, approximately, three years. To overcome it, the conventional thermoplastic road markings were prepared by adding polyolefin and oxidized PE wax to conventional petroleum resin. In addition, the melting viscosity was designed below 500 cP at $220^{\circ}C$ as well as the optimum viscosity for spray painting, and embedding ratio of glass beads were controlled about 50~60% by spraying in an interval of 1 second. Also the glass bead adhesive ratio was improved by reducing the amount of $CaCO_3$ below 40 wt%. The retroreflectivity was tested under four different conditions to evaluate the abrasion resistance of thermoplastic road markings. The retroreflectivity coefficient satisfied the international standard ($150mcd{\cdot}m^{-2}{\cdot}lux^{-1}$) in this study, and TPRM-7 was determined as an optimal ratio.

열가소성 차선도료는 세계적으로 가장 보편적으로 사용되고 있는 차선도료이다. 그러나 국내 적용되고 있는 차선도료는 내구성이 1년 밖에 되지 않아 선진외국에 비해 수명(3년 이상)이 상대적으로 짧다. 이를 개선하고자 기존에 사용되고 있는 석유계 수지에 polyolefin 수지를 추가로 첨가하고, LDPE 왁스를 기능성이 부여된 산화 PE 왁스의 대체 사용으로 기존의 열가소성 차선도료의 단점을 보완하였다. 차선도료의 용융점도는 $220^{\circ}C$의 온도에서 분사 도장방식의 최적 점도인 500 cP 이하가 되게 설계하였고, 도료를 도포한 후 반사유리알을 살포하는 시간간격을 1 s로 하여 함침비를 50~60%로 조절하였다. 또한 filler 중 $CaCO_3$의 첨가량을 40 wt% 이하로 하여 유리알 고착비를 향상시켰다. 열가소성 차선도료의 내마모성 평가를 위하여 4가지 조건에서의 재귀 반사성능을 측정하였다. 교통사고 발생 최소화와 운전자의 노령화 등으로 운전자 주행 중 최소 야간재귀 반사성능계수는 $150mcd{\cdot}m^{-2}{\cdot}lux^{-1}$ 이상을 만족하여야 하며, 마모횟수 증가에 따른 야간재귀 반사성능 저하가 가장 적은 TPRM-7를 열가소성 차선도료의 최적 배합비율로 결정하였다.

Keywords

References

  1. A. Carlos and P. E. Lopez, Pavement Marking Handbook, Texas Department of Transportation (2004).
  2. G. Burgess, M. R. Shortis, P. Scott, P., Photographic assessment of retroreflective film properties, ISPRS J. Photogramm. Remote Sens., 66(5), 743-750 (2011). https://doi.org/10.1016/j.isprsjprs.2011.07.002
  3. T. Grosges, Retro-reflection of glass beads for traffic road stripe paints, Opt. Mater., 30(10), 1549-1554 (2008). https://doi.org/10.1016/j.optmat.2007.09.010
  4. J. R. Sayer and M. L. Mefford, High visibility safety apparel and nighttime conspicuity of pedestrians in work zones, J. Safety Res., 35(5), 537-546 (2004). https://doi.org/10.1016/j.jsr.2004.08.007
  5. T. R. Miller, Benefit-cost analysis of lane marking, Transp. Res. Rec., 1334, 38-45 (1992).
  6. E. Cuelho, J. Stephens, and C. McDonald, A Review of the Performance and Costs of Contemporary Pavement Marking Systems, State of Montana Department of Transportation (2003).
  7. A. Thamizharasan, W. A. Sarasua, D. B. Clarke, and W. J. Davis, A Methodology for Estimating the Lifecycle of Interstate Highway Pavement Marking Retroflectivity, 83rd Transportation Research Board Annual Meeting, Washington, D.C. (2003).
  8. S. Dahlstedt and O. Svenson, Detection and reading distances of retroreflective road signs during night driving, Appl. Ergon., 8(1), 7-14 (1977). https://doi.org/10.1016/0003-6870(77)90110-7
  9. R. B. Gibbons and R. B. Williams, Assessment of the Durability of Wet Night Visible Pavement Marking; Wet Visibility Project Phase IV, Virginia Tech Transportation Institute (2012).
  10. C. Holzshuher and T. Simmons, Mobile Retroreflectivity Characterisitics for Pavement Markings at Highway Speeds, State of Florida (2005).
  11. P. Konstantopoulos, P. Chapman, and D. Crundall, Driver's visual attention as a function of driving experience and visibility, Accid. Anal. Prev., 42(3), 827-834 (2010). https://doi.org/10.1016/j.aap.2009.09.022
  12. A. N. Parker and J. S. M. Meja, Evaluation of the Performance of Permanent Pavement Markings, 82nd Transportation Research Board Annual Meeting, Washington, D.C. (2003).
  13. A. Rahman and N. E. Lownes, Analysis of rainfall impacts on platooned vehicle spacing and speed, Transp. Res. Part F : Traffic Psychol. Behav., 15(4), 395-403 (2012). https://doi.org/10.1016/j.trf.2012.03.004
  14. A. Hofland, A., Alkyd resins: From down and out to alive and kicking, Prog. Orga. Coat., 73(4), 274-282 (2012). https://doi.org/10.1016/j.porgcoat.2011.01.014
  15. S. M. Mirabedini, S. S. Jamali, M. Haghayegh, M. Sharifi, A. S. Mirabedini, and R. Hashemi-Nasab, Application of mixture experimental design to optimize formulation and performance of thermoplastic road markings, Prog. Orga. Coat., 75(4), 549-559 (2012). https://doi.org/10.1016/j.porgcoat.2012.05.012
  16. S. M. Mirabedini, M. Sharifi, M. Haghayegh, Sh. Shabani, P. Bakhtiari, P., Blending of hydrocarbon and rosin ester-based resins to study its effect on the physical and mechanical properties of thermoplastic road markings, Iran. J. Polym. Sci. Technol., 22, 457-467 (2010).
  17. V. Kouskoulas, An optimization model for pavement marking systems, Eur. J. Oper. Res., 33(3) 298-303 (1988).

Cited by

  1. Design of MMA-Type Thermosetting Road Markings to Improve Reflectivity vol.26, pp.4, 2015, https://doi.org/10.14478/ace.2015.1051