DOI QR코드

DOI QR Code

석유 코크스, 바이오매스, 혼합연료의 이산화탄소 가스화 반응 연구

A Reaction Kinetic Study of CO2 Gasification of Petroleum Coke, Biomass and Mixture

  • 국진우 (전북대학교 자원에너지공학과) ;
  • 신지훈 (전북대학교 자원에너지공학과) ;
  • 곽인섭 (전북대학교 자원에너지공학과) ;
  • 이시훈 (전북대학교 자원에너지공학과)
  • Kook, Jin Woo (Department of Resources and Energy Engineering, Chonbuk National University) ;
  • Shin, Ji Hoon (Department of Resources and Energy Engineering, Chonbuk National University) ;
  • Gwak, In Seop (Department of Resources and Energy Engineering, Chonbuk National University) ;
  • Lee, See Hoon (Department of Resources and Energy Engineering, Chonbuk National University)
  • 투고 : 2015.01.17
  • 심사 : 2015.02.14
  • 발행 : 2015.04.10

초록

석유 코크스, 바이오매스, 혼합연료들의 이산화탄소 가스화 반응성을 측정하고 비교하기 위해서 TGA (Thermogravimetric analyzer)를 이용하여 $1,100{\sim}1,400^{\circ}C$의 char-$CO_2$ 가스화 반응을 조사하였다. 기-고체반응속도 모델들에 적용하여 $1,100{\sim}1,400^{\circ}C$의 온도 영역에서의 반응 속도 상수를 구하였다. 또한 반응 속도 상수와 온도와의 관계를 Arrhenius 식에 적용하여 각 모델에서의 활성화에너지(Ea) 및 빈도 인자($K_0$)를 구하고 이를 실험값과 비교하여 석유 코크스, 바이오매스, 혼합 연료들의 이산화탄소 가스화 반응을 잘 모사하는 반응 속도식을 제시하였다. 반응온도가 증가할수록 이산화탄소 가스화에 소요되는 반응시간은 감축되었다. 또한 바이오매스와의 혼합이 증가할수록 활성화 에너지의 감소를 보여 바이오매스의 혼합이 석유 코크스의 이산화탄소 가스화 반응에 시너지 효과를 가져옴을 확인하였다.

Characteristics of Char-$CO_2$ gasification for petroleum coke, biomass and mixed fuels were compared in the temperature range of $1,100{\sim}1,400^{\circ}C$ using TGA (Thermogravimetric analyzer). Kinetic constants with respect to reaction temperature were determined by using different gas-solid reaction models. Also activation energy (Ea) and pre-exponential factors ($K_0$) in each models were calculated by using Arrhenius equation and then were compared with experimental values to determine reaction rate equation for char-$CO_2$ gasification. Reaction time for $CO_2$ gasification decreased with an increase of reaction temperature. Also, the activation energy of $CO_2$ gasification reaction for mixture with petroleum coke and biomass decreased with increasing biomass contents. This indicates that mixing with biomass could bring synergy effects on $CO_2$ gasification reaction.

키워드

참고문헌

  1. Y. Yun, Coal gasification technologies: past experience and future direction in Korea, Clean coal day, 1-20 (2006).
  2. R. W. Breault, Gasification processes old and new: a basic review of the major technologies, Energy, 3, 216-240 (2010).
  3. S. Kim, Analysis of economic feasibility of integrated gasification combined cycle (IGCC) as a next generation power supply in Korea, Journal of economic research, 13, 149-174 (2008).
  4. S. J. Yoon, Y. C. Choi, S. H. Lee, and J. G. Lee, Thermogravimetric study of coal and petroleum coke for co-gasification, Korean J. Chem. Eng., 24(3), 512-517 (2007). https://doi.org/10.1007/s11814-007-0090-y
  5. J. Fermoso, B. Arias, M. V. Gil, M. G. Plaza, C. Pevida, J. J. Pis, and F. Rubiera, Co-gasification of different rank coals with biomass and petroleum coke in a high-pressure reactor for H2-rich gas production, Bioresour. Technol., 101, 3230-3235 (2010). https://doi.org/10.1016/j.biortech.2009.12.035
  6. S. H. Lee, S. J. Yoon, H. W. Ra, Y. I. Son, J. C. Hong, and J. G. Lee, Gasification characteristics of coke and mixture with coal in an entrained-flow gasifier, Energy, 35, 3239-3244 (2010). https://doi.org/10.1016/j.energy.2010.04.007
  7. C. Zhao, L. Lin, K. Pang, W. Xiang, and X. Chen, Experimental study on catalytic steam gasification of natural coke in a fluidized bed, Fuel Process Technol., 91, 805-809 (2010). https://doi.org/10.1016/j.fuproc.2009.08.010
  8. S. J. Gong, X. Zhu, Y. J. Kim, B. H. Song, W. Yang, W. S. Moon, and Y. S. Byoun, A Kinetic Study of Steam Gasification of Low Rank Coal, Wood Chip and Petroleum Coke, Korean Chem. Eng. Res., 48(1), 80-87 (2010).
  9. B. R. Clements, Q. Zhuang, R. Pomalis, J. Wong, and D. Campbell, Ignition characteristics of co-fired mixtures of petroleum coke and bituminous coal in a pilot-scale furnace, Fuel, 97, 315-320 (2012). https://doi.org/10.1016/j.fuel.2012.01.009
  10. E. M. A. Edreis, G. Luo, A. Li, C. Chao, H. Hu, S. Zhang, B. Gui, L. Xiao , K. Xu, P. Zhang, and H. Yao, CO2 co-gasification flower sulphur petroleum coke and sugar cane bagasse via TG-FTIR analysis technique, Bioresour. Technol., 136, 595-603 (2013). https://doi.org/10.1016/j.biortech.2013.02.112
  11. J. Fermoso, B. Arias, M. G. Plaza, C. Pevida, F. Rubiera, J. J. Pis, F. Garcia-Pena, and P. Casero, High-pressure co-gasification of coal with biomass and petroleum coke, Fuel Process Technol., 90, 926-932 (2009). https://doi.org/10.1016/j.fuproc.2009.02.006
  12. A. Gonzalez, N. Moreno, R. Navia, and X. Querol, Study of a Chilean petroleum coke fluidized bed combustion fly ash and its potential application in copper, lead and hexavalent chromium removal, Fuel, 89, 3012-3021 (2010). https://doi.org/10.1016/j.fuel.2010.04.032
  13. S. T. Park, Y. T. Choi, and J. M. Sohn, The study of $CO_{2}$ gasification of low rank coal impregnated by $K_{2}CO_{3}$, $Mn(NO_{3})_{2}$ and $Ce(NO_{3})_{3}$, Appl. Chem. Eng., 22, 312-318 (2011).
  14. D. W. Kim, J. M. Lee, J. S. Kim, and P. K. Seon, Study on the Combustion Characteristics of Wood-pellet and Korean Anthracite using TGA, Korean Chem. Eng. Res., 48(1), 58-67 (2010).
  15. D. K. Park, S. D. Kim, S. H. Lee, and J. G. Lee, Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor, Bioresour Technol., 101(15), 6151-6156 (2010). https://doi.org/10.1016/j.biortech.2010.02.087
  16. M. Ishida and C. Y. Wen, Comparison of zone-reaction model and unreacted-core shrinking model in solid-gas reactions-I Isothermal analysis. Chem. Eng. Sci., 26, 1031-1041 (1971). https://doi.org/10.1016/0009-2509(71)80017-9
  17. O. Levenspiel, Chemical Reaction Engineering, Seconded, Wiley, New York (1972).
  18. S. Kasaoka, Y. Sakata, and C. Tong, Kinetics evaluation of the reactivity of various coal chars for gasification with carbon dioxide in comparison with steam, Int. Chem. Eng., 25, 160-175 (1985).

피인용 문헌

  1. Techno-economic Evaluation of an Ethanol Production Process for Biomass Waste vol.27, pp.2, 2016, https://doi.org/10.14478/ace.2016.1007
  2. on the gasification kinetics of petroleum coke pp.1556-7230, 2018, https://doi.org/10.1080/15567036.2018.1520355
  3. Effects of magnesium compounds on the gasification of petroleum coke vol.37, pp.2, 2019, https://doi.org/10.1080/10916466.2018.1517167
  4. 석유코크스/석탄 혼합 가스화를 이용하는 액화 공정의 경제성 평가 vol.54, pp.4, 2015, https://doi.org/10.9713/kcer.2016.54.4.501
  5. 가압 마이크로 수송관을 이용한 저급탄의 건조 특성 연구 vol.28, pp.3, 2015, https://doi.org/10.14478/ace.2017.1020