DOI QR코드

DOI QR Code

CoAPSO-34 촉매상에서 DTO (Dimethyl Ether to Olefins) 반응에 미치는 Co/Al 및 Si/Al 몰 비의 영향

Effects of Co/Al and Si/Al Molar Ratios on DTO (Dimethyl Ether to Olefins) Reaction over CoAPSO-34 Catalyst

  • 김효섭 (충남대학교 정밀응용화학과) ;
  • 이수경 (충남대학교 정밀응용화학과) ;
  • 최기환 (충남대학교 정밀응용화학과) ;
  • 이동희 (충남대학교 정밀응용화학과) ;
  • 박주식 (한국에너지기술연구원 수소연료전지연구단) ;
  • 김영호 (충남대학교 정밀응용화학과)
  • Kim, Hyo-Sub (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lee, Su-Gyung (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Choi, Ki-Hwan (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lee, Dong-Hee (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Park, Chu-Sik (Hydrogen and fuel cell department, Korea Institute of Energy Research) ;
  • Kim, Young-Ho (Department of Fine Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 투고 : 2014.12.08
  • 심사 : 2015.01.23
  • 발행 : 2015.04.10

초록

Co가 첨가된 SAPO-34 촉매(CoAPSO-34)상의 DTO 반응에서 촉매의 수명 향상에 미치는 Co/Al 및 Si/Al 몰 비의 영향을 연구했다. 제조된 CoAPSO-34 촉매들의 특성은 XRD, SEM, $^{29}Si$ MAS NMR 및 $NH_3$-TPD 기법에 의해 확인했다. 먼저 Co/Al 몰 비를 변화시키며 제조한 CoAPSO-34 촉매들의 수명은 SAPO-34와 비교하여 향상된 것으로 나타났으며, 가장 높은 수명을 갖는 촉매의 Co/Al 몰 비는 0.0025로 나타났다. Co/Al 몰 비를 0.0025로 고정하고 Si/Al 몰 비를 0.05에서 0.20으로 증가시킴에 따라 총 산점량은 0.432에서 1.111 mmol/g까지 증가하였다. 그러나 총 산점량이 너무 큰 촉매들은 둥지 내 다환 방향족 화합물들의 급속한 축척으로 인한 기공 막힘으로 빠르게 비활성화되었다. 따라서 0.1의 적절한 Si/Al 몰 비를 갖는 CoAPSO-34 촉매가 수명이 가장 우수한 것으로 나타났으며, SAPO-34 촉매의 수명과 비교하여 약 87% 향상되었다.

Effects of Co/Al and Si/Al molar ratios of cobalt incorporated SAPO-34 catalysts (CoAPSO-34) on their catalytic lifetime were investigated in dimethyl to olefin (DTO) reaction. The property of CoAPSO-34 catalysts was characterized using XRD, SEM, $^{29}Si$ MAS NMR, and $NH_3$-TPD techniques. First, the lifetime of CoAPSO-34 prepared by varying Co/Al molar ratios was improved than that of using the SAPO-34 catalyst, and the optimal Co/Al molar ratio was 0.0025. The total acid site amounts increased from 0.432 to 1.111 mmol/g with increasing Si/Al molar ratios from 0.05 to 0.20 while fixing a Co/Al molar ratio of 0.0025. However, the catalysts with too high acid site amounts were deactivated rapidly with blockages of the pores due to the fast accumulation of polycyclic aromatic hydrocarbons in the cage. Therefore, the CoAPSO-34 catalyst with a proper Si/Al molar ratio of 0.10 was the most superior in terms of the lifetime, which was improved by about 87% as compared with that of the SAPO-34 catalyst.

키워드

참고문헌

  1. B. M. Lok, C. A. Messina, R. L. Patton, R. T. Gajek, T. R. Cannan, and E. M. Flanigen, Silicoaluminophosphate molecular sieves: another new class of microporous crystalline inorganic solids, J. Am. Chem. Soc., 106, 6092-6093 (1984). https://doi.org/10.1021/ja00332a063
  2. G. Sastre, D. W. Lewis, and C. R. A. Catlow, Modeling of silicon substitution in SAPO-5 and SAPO-34 molecular sieves, J. Phys. Chem. B, 101, 5249-5262 (1997). https://doi.org/10.1021/jp963736k
  3. M. J. van Niekerk, J. C. Q. Fletcher, and C. T. O'Connor, Effect of catalyst modification on the conversion of methanol to light olefins over SAPO-34, Appl. Catal. Gen., 138, 135-145 (1996). https://doi.org/10.1016/0926-860X(95)00240-5
  4. X. Wu and R. G. Anthony, Effect of feed composition on methanol conversion to light olefins over SAPO-34, Appl. Catal. Gen., 218, 241-250 (2001). https://doi.org/10.1016/S0926-860X(01)00651-2
  5. G. Seo and B. G. Min, Mechanism of methanol conversion over zeolite and molecular sieve catalysts, Korean Chem. Eng. Res., 44, 329-339 (2006).
  6. K. Y. Lee, H. J. Chae, S. Y. Jeong, and G. Seo, Effect of crystallite size of SAPO-34 catalysts on their induction period and deactivation in methanol-to-olefin reactions, Appl. Catal. Gen., 369, 60-66 (2009). https://doi.org/10.1016/j.apcata.2009.08.033
  7. P. Wang, A. Lv, J. Hu, J. Xu, and G. Lu, The synthesis of SAPO-34 with mixed template and its catalytic performance for methanol to olefins reaction, Microp. Mesop. Mater., 152, 178-184 (2012). https://doi.org/10.1016/j.micromeso.2011.11.037
  8. M. Kim, H. J. Chae, T. W. Kim, K. E. Jeong, C. U. Kim, and S. Y. Jeong, Attrition resistance and catalytic performance of spray-dried SAPO-34 catalyst for MTO process: Effect of catalyst phase and acidic solution, J. Ind. Eng. Chem., 17, 621-627 (2011). https://doi.org/10.1016/j.jiec.2011.05.009
  9. B. M. Weckhuysen, R. R. Rao, J. A. Martens, and R. A. Schoonheydt, Transition Metal Ions in Microporous Crystalline Aluminophosphates: Isomorphous Substitution, Eur. J. Inorg. Chem., 1999, 565-577 (1999).
  10. M. Kang, Synthesis and catalytic performance on methanol conversion of NiAPSO-34 crystals (II): catalytic performance under various reaction conditions, J. Mol. Catal. Chem., 150, 205-212 (1999). https://doi.org/10.1016/S1381-1169(99)00193-4
  11. M. Karthik, A. Vinu, A. K. Tripathi, N. M. Gupta, M. Palanichamy, and V. Murugesan, Synthesis, characterization and catalytic performance of Mg and Co substituted mesoporous aluminophosphates, Microp. Mesop. Mater., 70, 15-25 (2004). https://doi.org/10.1016/j.micromeso.2004.02.012
  12. Y. Wei, Y. He, D. Zhang, L. Xu, S. Meng, Z. Liu, and B. L. Su, Study of Mn incorporation into SAPO framework: Synthesis, characterization and catalysis in chloromethane conversion to light olefins, Microp. Mesop. Mater., 90, 188-197 (2006). https://doi.org/10.1016/j.micromeso.2005.10.042
  13. D. Zhang, Y. Wei, L. Xu, F. Chang, Z. Liu, S. Meng, B. L. Su, and Z. Liu, MgAPSO-34 molecular sieves with various Mg stoichiometries: Synthesis, characterization and catalytic behavior in the direct transformation of chloromethane into light olefins, Microp. Mesop. Mater., 116, 684-692 (2008). https://doi.org/10.1016/j.micromeso.2008.06.001
  14. Y. Wei, D. Zhang, L. Xu, F. Chang, Y. He, S. Meng, B. L. Su, and Z. Liu, Synthesis, characterization and catalytic performance of metal-incorporated SAPO-34 for chloromethane transformation to light olefins, Catal. Today, 131, 262-269 (2008). https://doi.org/10.1016/j.cattod.2007.10.055
  15. H. S. Kim, S. G. Lee, Y. H. Kim, D. H. Lee, J. B. Lee, and C. S. Park, Improvement of lifetime using transition metal-incorporated SAPO-34 catalysts in conversion of dimethyl ether to light olefins, J. Nanomater., 2013, 1-9 (2013).
  16. S. G. Lee, H. S. Kim, Y. H. Kim, E. J. Kang, D. H. Lee, and C. S. Park, Dimethyl ether conversion to light olefins over the SAPO-34/ZrO2 composite catalysts with high life time, J. Ind. Eng. Chem., 20, 61-67 (2014). https://doi.org/10.1016/j.jiec.2013.04.026
  17. E. J. Kang, D. H. Lee, H. S. Kim, K. H. Choi, C. S. Park, and Y. H. Kim, Conversion of DME to light olefins over mesoporous SAPO-34 catalyst prepared by carbon nanotube template, Appl. Chem. Eng., 25, 34-40 (2014). https://doi.org/10.14478/ace.2013.1093
  18. Y. H. Song, H. J. Chae, K. E. Jeong, C. U. Kim, C. H. Shin, and S. Y. Jeong, The effect of crystal size of SAPO-34 synthesized using various structure directing agents for MTO reaction, J. Korean Ind. Eng. Chem., 19, 559-567 (2008).
  19. S. Li, J. L. Falconer, and R. D. Noble, SAPO-34 membranes for $CO_2/CH_4$ separation, J. Membr. Sci., 241, 121-135 (2004). https://doi.org/10.1016/j.memsci.2004.04.027
  20. M. A. Carreon, S. Li, J. L. Falconer, and R. D. Noble, SAPO-34 seeds and membranes prepared using multiple structure directing agents, Adv. Mater., 20, 729-732 (2008). https://doi.org/10.1002/adma.200701280
  21. A. M. Prakash and S. Unnikrishnan, Synthesis of SAPO-34: high silicon incorporation in the presence of morpholine as template, J. Chem. Soc., Faraday Trans., 90, 2291-2296 (1994). https://doi.org/10.1039/ft9949002291
  22. S. Ashtekar, S. V. V. Chilukuri, and D. K. Chakrabarty, Small-pore molecular sieves SAPO-34 and SAPO-44 with chabazite structure: a study of silicon incorporation, J. Phys. Chem., 98, 4878-4883 (1994). https://doi.org/10.1021/j100069a018
  23. J. F. Haw and D. M. Marcus, Well-defined (supra)molecular structures in zeolite methanol-to-olefin catalysis, Topics Catal., 34, 41-48 (2005). https://doi.org/10.1007/s11244-005-3798-0
  24. J. Tan, Z. Liu, X. Bao, X. Liu, X. Han, C. He, and R. Zhai, Crystallization and Si incorporation mechanisms of SAPO-34, Microp. Mesop. Mater., 53, 97-108 (2002). https://doi.org/10.1016/S1387-1811(02)00329-3
  25. J. W. Park, S. J. Kim, M. Seo, S. Y. Kim, Y. Sugi, and G. Seo, Product selectivity and catalytic deactivation of MOR zeolites with different acid site densities in methanol-to-olefin (MTO) reactions, Appl. Catal. Gen., 349, 76-85 (2008). https://doi.org/10.1016/j.apcata.2008.07.006