DOI QR코드

DOI QR Code

Research Trends in Doping Methods on TiO2 Nanotube Arrays Prepared by Electrochemical Anodization

양극산화 기법으로 제조한 TiO2 나노튜브의 촉매 도핑 연구 동향

  • Yoo, Hyeonseok (Department of Chemistry and Chemical Engineering, Inha University) ;
  • Choi, Jinsub (Department of Chemistry and Chemical Engineering, Inha University)
  • Received : 2015.03.10
  • Published : 2015.04.10

Abstract

Nanotubular $TiO_2$ prepared by electrochemical anodization has been significantly used for various applications due to high aspect ratio structures showing a high chemical stability. Morphological properties of nanotubular titanium oxide are easily tailored by adjusting types and compositions of electrolyte, pH value, applied voltage, temperature and anodization time. Since their catalytic properties can be enhanced by doping foreign elements into $TiO_2$, metal as well as non-metal elements are doped into $TiO_2$ nanotubes using different methods. For example, single anodization, thermal annealing, precipitation, and electrochemical deposition have been applied to simplify the doping process. In this review, anodization of Ti to produce $TiO_2$ and doping methods will be discussed in detail.

전기화학적 양극산화 기법으로 제조한 타이타늄 나노튜브는 타이타늄 특유의 강한 화학내구성 및 나노튜브의 높은 종횡비로 인하여 넓은 범위에 응용된 소재이다. 전해질의 구성 성분과 종류, pH, 전압, 온도 그리고 양극산화 시간이 타이타늄 나노튜브의 성상을 결정짓는 요소들이며 도핑을 통해 촉매능을 부여할 수 있다. 비금속 및 금속 원소 모두 도핑 가능하며 도핑 방법 역시 다양하다. 도핑 방법에는 합금 양극산화, 열처리법, 함침법, 전기도금법 등 다양한 방법들이 이용되며 점차 간단하고 빠른 도핑 방법을 찾는 방향으로 연구가 진행되고 있다. 본 총설에서는 타이타늄 나노튜브의 생성 원리와 상용된 제법들에 관하여 기술하고 도핑과 그 응용 및 최근의 도핑 연구 동향을 다루도록 하겠다.

Keywords

References

  1. J. Choi, Fabrication of monodomain porous alumina using nanoimprint lithography and its applications, PhD Dissertation, Martin-Luther-Universitat, Halle-Wittenberg, Germany (2004).
  2. P. Roy, S. Berger, and P. Schmuki, $TiO_{2}$ nanotubes: synthesis and applications, Angew. Chem. Int. Edit., 50, 2904-2939 (2011). https://doi.org/10.1002/anie.201001374
  3. I. Sieber, H. Hildebrand, A. Friedrich, and P. Schmuki, Formation of self-organized niobium porous oxide on niobium, Electrochem. Commun., 7, 97-100 (2005). https://doi.org/10.1016/j.elecom.2004.11.012
  4. S. Berger, F. Jakubka, and P. Schmuki, Formation of hexagonally ordered nanoporous anodic zirconia, Electrochem. Commun., 10, 1916-1919 (2008). https://doi.org/10.1016/j.elecom.2008.10.002
  5. J. M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, and P. Schmuki, $TiO_{2}$ nanotubes: Self-organized electrochemical formation, properties and applications, Curr. Opin. Solid St. M., 11, 3-18 (2007). https://doi.org/10.1016/j.cossms.2007.08.004
  6. R. Hahn, J. M. Macak, and P. Schmuki, Rapid anodic growth of $TiO_{2}$ and $WO_{3}$ nanotubes in fluoride free electrolytes, Electrochem. Commun., 9, 947-952 (2007). https://doi.org/10.1016/j.elecom.2006.11.037
  7. S. Berger, F. Jakubka, and P. Schmuki, Self-ordered hexagonal nanoporous hafnium oxide and transition to aligned $HfO_{2}$ nanotube layers, Electrochem. Solid St., 12, K45 (2009). https://doi.org/10.1149/1.3117253
  8. M. Assefpour-Dezfuly, C. Vlachos, and E. H. Andrews, Oxide morphology and adhesive bonding on titanium surfaces J. Mater. Sci., 19, 3626-3639 (1984). https://doi.org/10.1007/BF02396935
  9. J. Choi, J. K. Lee, J. H. Lim, and S. J. Kim, Technology trends in fabrication of nanostructures of metal oxides by anodization and their applications, J. Korean Ind. Eng. Chem., 249-258, 19 (2008).
  10. Karla S. Brammer, Seunghan Oh, Christine J. Frandsen, and Sungho Jin (2011). Biomaterials and biotechnology schemes utilizing $TiO_{2}$ nanotube arrays, Biomaterials science and engineering, Prof. Rosario (Ed.), ISBN: 978-953-307-609-6.
  11. A. E. R. Mohamed and S. Rohani, Modified $TiO_{2}$ nanotube arrays (TNTAs): progressive strategies towards visible light responsive photoanode, a review, Energy Environ. Sci., 4, 1065-1086 (2011). https://doi.org/10.1039/c0ee00488j
  12. V. Galstyan, E. Comini, G. Faglia, and G. Sberveglieri, $TiO_{2}$ nanotubes: Recent advances in synthesis and gas sensing properties, Sensors, 13, 14813-14838 (2013). https://doi.org/10.3390/s131114813
  13. Craig A. Grimes and Copal K. Mor, TiO2 nanotube arrays: Synthesis, properties and applications, 1-60, Springer, USA (2009).
  14. W. Lee and S. J. Park, Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures, Chem. Rev., 114, 7487-7556 (2014). https://doi.org/10.1021/cr500002z
  15. K. Lee, A. Mazare, and P. Schmuki, One-dimensional titanium dioxide nanomaterials: nanotubes, Chem. Rev., 114, 9385-9454 (2014). https://doi.org/10.1021/cr500061m
  16. V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M. Y. Perrin, and M. Aucouturier, Structure and physicochemistry of anodic oxide films on titanium and TA6V alloys, Surf. Interface Anal., 27, 62-637 (1999).
  17. D. Gong, C. A. Grimes, O. K. Varghese, W. C. Hu, R. S. Singh, Z. Chen, and E. C. Dickey, Titanium oxide nanotube arrays prepared by anodic oxidation, J. Mater. Res., 16, 3331-3334 (2001). https://doi.org/10.1557/JMR.2001.0457
  18. J. Bai, B. Zhou, L. Li, Y. Liu, Q. Zheng, J. Shao, X. Zhu, W. Cai, J. Liao, and L. Zou, The formation mechanism of titania nanotube arrays in hydrofluoric acid electrolyte, J. Mater. Sci., 43, 1880-1884 (2008). https://doi.org/10.1007/s10853-007-2418-8
  19. D. Kowalski, D. Kim, and P. Schmuki, $TiO_{2}$ nanotubes, nanochannels and mesosponge: Self-organized formation and applications, Nano Today, 8, 235-264 (2013). https://doi.org/10.1016/j.nantod.2013.04.010
  20. R. Beranek, H. Hildebrand, and P. Schmuki, Self-organized porous titanium oxide prepared in $H_{2}SO_{4}$/HF electrolytes, Electrochem. Solid. St., 6, B12-B14 (2003). https://doi.org/10.1149/1.1545192
  21. N. K. Allam and C. A. Grimes, Effect of cathode material on the morphology and photoelectrochemical properties of vertically oriented $TiO_{2}$ nanotube arrays, Sol. Energ. Mat. Sol. C., 92, 1468-1475 (2008). https://doi.org/10.1016/j.solmat.2008.06.007
  22. M. Paulose, H. E. Prakasam, O. K. Varghese, L. Peng, K. C. Popat, G. K. Mor, T. A, Desai, and C. A. Grimes, J. Phys. Chem. C, 111, 14992-14997 (2007). https://doi.org/10.1021/jp075258r
  23. J. M. Macak and P. Schmuki, Anodic growth of self-organized anodic $TiO_{2}$ nanotubes in viscous electrolytes, Electrochim. Acta, 52, 1258-1264 (2006). https://doi.org/10.1016/j.electacta.2006.07.021
  24. J. H. Lim and J. Choi, Titanium oxide nanowires originating from anodically grown nanotubes: the bamboo-splitting model, Small, 3, 1504-1507 (2007). https://doi.org/10.1002/smll.200700114
  25. H. Yoo, Y.-W. Choi, and J. Choi, Ruthenium oxide-doped $TiO_{2}$ nanotubes by single-step anodization for water-oxidation applications, Chem. Cat. Chem., 7, 643-647 (2015).
  26. D. Kim, S. Fujimoto, and P. Schmuki, H. Tsuchiya, Nitrogen doped anodic $TiO_{2}$ nanotubes grown from nitrogen-containing Ti alloys, Electrochem. Commun., 10, 910-913 (2008). https://doi.org/10.1016/j.elecom.2008.04.001
  27. P. Kar, K. S. Raja, M. Misra, and B. N. Agasanapur, Formation and stability of anatase phase of phosphate incorporated and carbon doped titania nanotubes, Mater. Res. Bull., 44, 398-402 (2009). https://doi.org/10.1016/j.materresbull.2008.05.004
  28. R. Hahn, A. Ghicov, J. Salonen, V.-P. Lehto, and P. Schmuki, Carbon doping of self-organized $TiO_{2}$ nanotube layers by thermal acetylene treatment, Nanotechnology, 18, 1-4 (2007).
  29. X. Zhou, F. Peng, H. Wang, H. Yu, and J. Yang, Preparation of B, N-codoped nanotube arrays and their enhanced visible light photoelectrochemical performances, Electrochem. Commun., 13, 121-124 (2011). https://doi.org/10.1016/j.elecom.2010.11.030
  30. X. Tang and D. Li, Sulfur-doped highly ordered $TiO_{2}$ nanotubular arrays with visible light response, J. Phys. Chem. C, 112, 5405-5409 (2008). https://doi.org/10.1021/jp710468a
  31. R. P. Vitiello, J. M. Macak, A. Ghicov, H. Tsuchiya, L. F. P. Dick, and P. Schmuki, N-Doping of anodic $TiO_{2}$ nanotubes using heat treatment in ammonia, Electrochem. Commun., 8, 544-548 (2006). https://doi.org/10.1016/j.elecom.2006.01.023
  32. Y. An, L. Tang, X. Jiang, H. Chen, M. Yang, L. Jin, S. Zhang, C. Wang, and W. Zhang, A photoelectrochemical immunosensor based on Au-doped $TiO_{2}$ nanotube arrays for the detection of alpha- synuclein, Chem. -Eur. J., 16, 14439-14446 (2010). https://doi.org/10.1002/chem.201001654
  33. Y. Wang, Z. Li, Y. Tian, W. Zhao, X. Liu, and J. Yang, Facile method for fabricating silver-doped $TiO_{2}$ nanotube arrays with enhanced photoelectrochemical property, Mater. Lett., 122, 248-251 (2014). https://doi.org/10.1016/j.matlet.2014.02.053
  34. M. Sun and X. Cui, Anodically grown Si-W codoped $TiO_{2}$ nano tubes and its enhanced visible light photoelectrochemical response, Electrochem. Commun., 20, 133-136, (2012). https://doi.org/10.1016/j.elecom.2012.04.016
  35. K. Xiong, Z. Deng, L. Li, S. Chen, M. Xia, L. Zhang, X. Qi, W. Ding, S. Tan, and Z. Wei, Sn and Sb co-doped RuTi oxides supported on $TiO_{2}$ nanotubes anode for selectivity toward electrocatalytic chlorine evolution, J. Appl. Electrochem., 43, 847-854 (2013). https://doi.org/10.1007/s10800-013-0570-1
  36. R. Hang, X. Huang, L. Tian, Z. He, and B. Tang, Preparation, characterization, corrosion behavior and bioactivity of $Ni_{2}O_{3}$-doped $TiO_{2}$ nanotubes on NiTi alloy, Electrochim. Acta, 70, 382-393 (2012). https://doi.org/10.1016/j.electacta.2012.03.085
  37. D. Ding, C. Ning, L. Huang, F. Jin, Y. Hao, S. Bai, Y. Li, M. Li, and D. Mao, Anodic fabrication and bioactivity of Nb-doped $TiO_{2}$ nanotubes, Nanotechnology, 20, 1-6 (2009).
  38. H. Liu, G. Liu, and Q. Zhou, Preparation and characterization of Zr doped $TiO_{2}$ nanotube arrays on the titanium sheet and their enhanced photocatalytic activity, J. Solid State Chem., 182, 3238-3242 (2009). https://doi.org/10.1016/j.jssc.2009.09.016
  39. A. Ghicov, B. Schmidt, J. Kunze, and P. Schmuki, Photoresponse in the visible range from Cr doped $TiO_{2}$ nanotubes, Chem. Phys. Lett., 433, 323-326 (2007). https://doi.org/10.1016/j.cplett.2006.11.065
  40. T. Mishra, L. Wang, R. Hahn, and P. Schmuki, In-situ Cr doped anodized $TiO_{2}$ nanotubes with increased photocurrent response, Electrochim. Acta, 132, 410-415 (2014). https://doi.org/10.1016/j.electacta.2014.03.101
  41. X. Wang, J. Qiao, F. Yuan, R. Hang, X. Huang, and B. Tang, In situ growth of self-organized Cu-containing nano-tubes and nano-pores on Ti90-xCu10Alx (x = 0, 45) alloys by one-pot anodization and evaluation of their antimicrobial activity and cytotoxicity, Surf. Coat. Tech., 240, 167-178 (2014). https://doi.org/10.1016/j.surfcoat.2013.12.036
  42. S. Ananthakumar, J. Ramkumar, and S. Moorthy Babu, Effect of co-sensitization of CdSe nanoparticles with N3 dye on $TiO_{2}$ nanotubes, Sol. Energy, 106, 136-142 (2014). https://doi.org/10.1016/j.solener.2014.01.044
  43. M. Qorbani, N. Naseri, O. Moradlou, R. Azimirad, and A. Z. Moshfegh, How CdS nanoparticles can influence $TiO_{2}$ nanotube arrays in solar energy applications?, Appl. Catal. B-Environ., 162, 210-216 (2015). https://doi.org/10.1016/j.apcatb.2014.06.053
  44. S. Shin, K. Kim, and J. Choi, Fabrication of ruthenium-doped $TiO_{2}$ electrodes by one-step anodization for electrolysis applications, Electrochem. Commun., 36, 88-91 (2013). https://doi.org/10.1016/j.elecom.2013.09.016
  45. S. Shin, Y.-W. Choi, and J. Choi, Water splitting by dimensionally stable anode prepared through micro-arc oxidation, Mater. Lett., 105, 117-119 (2013). https://doi.org/10.1016/j.matlet.2013.04.065
  46. Y. Gim, M. Seong, Y.-W. Choi, and J. Choi, $RuO_{2}$-doping into high-aspect-ratio anodic $TiO_{2}$ nanotubes by electrochemical potential shock for water oxidation, Electrochem. Commun., 52, 37-40 (2015). https://doi.org/10.1016/j.elecom.2015.01.004
  47. N. Papastefanakis, D. Mantzavinos, and A. Katsaounis, DSA electrochemical treatment of olive mill wastewater on Ti/$RuO_{2}$ anode, J. Appl. Electrochem., 40, 729-737 (2009)
  48. N. Perkas, Z. Zhong, L. Chen, M. Besson, and A. Gedanken, Sonochemically prepared high dispersed Ru/$TiO_{2}$ mesoporous catalyst for partial oxidation of methane to syngas, Catal. Lett., 103, 9-14 (2005). https://doi.org/10.1007/s10562-005-6496-4
  49. F. Ferrara, New materials for eco-sustainable electrochemical processes: Oxygen evolution reaction at different electrode materials, PhD Dissertation, University of Cagliari, Cagliari, France (2008).
  50. Y. Jo, I. Jung, I. Lee, J. Choi, and Y. Tak, Fabrication of through-hole $TiO_{2}$ nanotubes by potential shock, Electrochem. Commun., 12, 616-619 (2010). https://doi.org/10.1016/j.elecom.2010.02.013