DOI QR코드

DOI QR Code

Characterization of alkali activated geopolymer mortar doped with MWCNT

  • Khater, H.M. (Housing and building national research center) ;
  • Abd el Gawaad, H.A. (Housing and building national research center)
  • 투고 : 2014.12.02
  • 심사 : 2015.03.30
  • 발행 : 2015.03.25

초록

This paper aimed to investigate the effect of MWCNTs on properties of slag Geopolymeric mortar. Geopolymeric matrices containing different MWCNTs concentrations (0.0, 0.1, 0.2, 0.3 and 0.4 % by weight of the used binder) were synthesized. The Geopolymer mortar composed of aluminosilicate slag to sand (1:2), while the alumino silicate source binder composed of 50% air cooled slag and 50%water cooled slag both passing a sieve of $90{\mu}m$, while the sand passing a sieve of 1 ml. The materials prepared at water/binder ratios in a range of 0.34-0.39% depending on the added MWCNT, whereas the Gelenium Ace-30 superplasticizer used in the ratio of 1.4-2.2% from the total dry weight for better dispersion of MWCNT under sonication for 15 min. Alkaline activation of the Geopolymer mortar was carried by using of 6% NaOH. Curing was performed under temperature of $40^{\circ}C$ and 100% R.H. Results showed that the addition of MWCNTs enhanced the resulting amorphous geopolymer structure with marked decrease in the drying shrinkage as well as water absorption specially when using 0.1% MWCNT, while further increase in MWCNTs results in agglomeration in MWCNT within the matrix and so hinder the propagation of Geopolymerization reaction and negatively affect the formed geopolymer structure.

키워드

참고문헌

  1. Abu-Al-Rub, R.K., Tyson, B.M., Yazdanbakhsh, A. and Grasley, Z. (2012), "Mechanical properties of nanocomposite cement incorporating surface-treated and untreated carbon nanotubes and carbon nanofibres", ASCE J Nanomech Micromech, 2(1), 1-6. https://doi.org/10.1061/(ASCE)NM.2153-5477.0000041
  2. Aglan, H.; Morsy, M., Allie, A. and Fouad, F. (2009), "Evaluation of fiber reinforced nanostructured Perlite-cementitious surface compound for building skin applications", Constr. Build. Mater., 23, 138-145. https://doi.org/10.1016/j.conbuildmat.2008.01.010
  3. Alexandre Silva de Vargas; Denise.C.C. Dal Molin; A ngela.B. Masuero; Antonio.C.F. Vilela; Joao Castro-Gomes; Ruby M. Gutierrez (2014), "Strength development of alkali-activated fly ash produced with combined NAOH and CA(OH)2 activators", Cement Concrete Compos., 53, 341-349. https://doi.org/10.1016/j.cemconcomp.2014.06.012
  4. Ando, Y. (1994), "the preparation of carbon nanotubes", Full Sci Technol., 173-180.
  5. Andrews, R., Jacques, D., Qian, D. and Dickey, E.C. (2001), Carbon, 39, 1681-1687. https://doi.org/10.1016/S0008-6223(00)00301-8
  6. ASTM C109M-12 (2012), "Standard test method for compressive strength of hydraulic cement mortars".
  7. ASTM C140-01, "Standard test methods for sampling and testing concrete masonry units and related units",(2001).
  8. Bakharev T. (2004), "Resistance of geopolymer materials to acid attack", Cement Concrete Res., 35(4), 658-670. https://doi.org/10.1016/j.cemconres.2004.06.005
  9. Bakharev, T., Sanjayan, J.G. and Cheng, Y.B. (1999), "Effect of elevated temperature curing on properties of alkali-activated slag concrete", Cement Concrete Res., 29, 1619-1625. https://doi.org/10.1016/S0008-8846(99)00143-X
  10. Ben Haha, M.; Le Saout, G. l; Winnefeld, F. and Lothenbach, B. (2011), "Influence of Activator Type on Hydration Kinetics, Hydrate Assemblage and Microstructural Development of Alkali Activated Blast-Furnace Slags", Cement Concrete Res., 41(3), 301-310. https://doi.org/10.1016/j.cemconres.2010.11.016
  11. Ben Haha, M., Lothenbach, B., Le Saout, G.l. and Winnefeld, F. (2011), "Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag - Part I: Effect of MgO", Cement Concrete Res., 41(9), 955-963. https://doi.org/10.1016/j.cemconres.2011.05.002
  12. Chen, S.J., Collins, F.G., Macleod, A.J.N., Pan Z., Duan, W.H. and Wang, C.M. (2011), "Carbon nanotube-cement: a retrospect", ISE J. Part A: Civil Struct. Eng., 4(4), 254-265. https://doi.org/10.1080/19373260.2011.615474
  13. Coleman, N.J., Khan, U., Blau, W.J. and Gun-ko, Y.K. (2006), "Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites", Carbon, 44(9), 1624-1652. https://doi.org/10.1016/j.carbon.2006.02.038
  14. Collins, F., Lambert, F. and Duan, W.H. (2012), "The influence of admixtures on the dispersion, workability, and strength of carbon nanotube-OPC paste mixtures", Cement Concrete Compos., 34(9), 1067-1074. https://doi.org/10.1016/j.cemconcomp.2012.06.007
  15. Collins, F., Lambert, F. and Duan, W.H. (2012), "The influence of admixtures on the dispersion, workability, and strength of carbon nanotube-OPC paste mixtures", Cement Concrete Compos., 34(9), 1067-1074. https://doi.org/10.1016/j.cemconcomp.2012.06.007
  16. Duxson, P.; Provis, J.L., Lukey, G.C., van Deventer, J.S.J., Separovic, F. and Gan, Z.H. (2006), "39K NMR of Free Potassium in Geopolymers", Ind. Eng. Chem. Res., 45(26), 9208-9210. https://doi.org/10.1021/ie060838g
  17. El-Sayed, H.A.; Abo El-Enein, S.A.; Khater, H.M. and Hasanein, S.A. (2011), "Resistance of alkali activated water cooled slag geopolymer to sulfate attack", Ceramics - Silikaty, 55, 153-160.
  18. Fernandez-Diaz, L., Fernandez-Gonzalez, A . and Prieto, M. (2010), "The role of sulfate groups in controlling CaCO3 polymorphism", Geochim Cosmochim Acta, 74(2), 6064-6076. https://doi.org/10.1016/j.gca.2010.08.010
  19. Fu, K., Huang, W. and Lin, Y. (2001), "Defunctionalization of functionalized carbon nanotubes", Nano Letters, 1(8): 439-441. https://doi.org/10.1021/nl010040g
  20. Gao, D., Sturm, M. and Mo, Y.L. (2009), "Electrical resistance of carbon-nanofibre concrete", Smart Mater Struct., 18(9), 1-7.
  21. Garcia Lodeiro, I.; Macphee, D.E., Palomo, A. and Fernaandez-Jimenez, A. (2009), "Effect of Alkalis on Fresh C-S-H Gels. FTIR Analysis", Cement Concrete Res., 39, 147-153. https://doi.org/10.1016/j.cemconres.2009.01.003
  22. Garcia Lodeiro, I.; Palomo, A., Fernaandez-Jimenez, A. and Macphee, D.E. (2011), "Compatibility studies between N-A-S-H and C-A-S-H Gels. study in the ternary diagram Na2O-CaO-Al2O3-SiO2-H2O", Cement Concrete Res., 41(9), 923-931. https://doi.org/10.1016/j.cemconres.2011.05.006
  23. Garcia-Lodeiro, I.; Fernandez-Jimenez, A., Palomo, A. and Macphee, D.E. (2010), "Effect on fresh CS-H gels of the simultaneous addition of alkali and aluminum, Cement Concrete Res., 40, 27-32. https://doi.org/10.1016/j.cemconres.2009.08.004
  24. Ghandi Rouainia and Kamal Djeghaba (2008), "Evaluation of Young's modulus of single walled Carbon Nanotubes (SWNT) Reinforced Concrete Composite", J. Eng. Appl. Sci., 3(6), 504-515.
  25. Hamon, M.A., Hui, H. and Bhowmik, P. (2002), "Ester-functionalized soluble single-walled carbon nanotubes", Appl. Phys. A., 74(3), 333-338.
  26. Han, B., Yu X. and Ou, J. (2011), "Multifunctional and smart carbon nanotube reinforced cement-based materials", Nanotechnology in Civil Infrastructure, Springer, 1-47.
  27. Hanjitsuwan, S., Chindaprasirt, P. and Pimraksa, K. (2011), "Electrical conductivity and dielectric property of fly ash geopolymer pastes", Int. J. Miner. Metall. Mater., 18(1), 94-99. https://doi.org/10.1007/s12613-011-0406-0
  28. Hardjito, D. and Rangan, B.V. (2005), Development and Properties of Low-Calcium Fly Ash Based Geopolymer Concrete, Research Report GC1, Curtin University of Technology Perth, Australia.
  29. Heister, E., Lamprecht, C., Neves, V., Tilmaciu, C., Datas, L. and Emmanuel Flahaut, E. (2010), "Higher dispersion efficacy of functionalized carbon nanotubes in chemical and biological environments", ACS Nano, 4(5), 2615-2626. https://doi.org/10.1021/nn100069k

피인용 문헌

  1. Modeling the alkali aggregate reaction expansion in concrete vol.16, pp.1, 2015, https://doi.org/10.12989/cac.2015.16.1.037
  2. Utilization of some industrial wastes for eco-friendly cement production vol.12, 2017, https://doi.org/10.1016/j.susmat.2017.03.001
  3. Development of geopolymer with pyroclastic flow deposit called Shirasu vol.4, pp.3, 2015, https://doi.org/10.12989/amr.2015.4.3.179
  4. Microstructure and mechanical properties of a metakaolinite-based geopolymer nanocomposite reinforced with carbon nanotubes vol.42, pp.14, 2016, https://doi.org/10.1016/j.ceramint.2016.06.080
  5. Intelligently designed fly-ash based hybrid composites with very high hardness and Young’s modulus vol.158, 2018, https://doi.org/10.1016/j.conbuildmat.2017.10.049
  6. Synthesis, processing, characterization, and applications of red mud/carbon nanotube composites vol.42, pp.15, 2016, https://doi.org/10.1016/j.ceramint.2016.07.146
  7. Investigation on the Mechanical Properties of a Cement-Based Material Containing Carbon Nanotube under Drying and Freeze-Thaw Conditions vol.8, pp.12, 2015, https://doi.org/10.3390/ma8125491
  8. Amelioration of freeze thaw damage of concrete with multi-walled carbon nano tubes vol.18, pp.1, 2021, https://doi.org/10.1108/wje-08-2020-0345
  9. Hybrid Effect of PVA Fibre and Carbon Nanotube on the Mechanical Properties and Microstructure of Geopolymers vol.8, pp.None, 2015, https://doi.org/10.3389/fmats.2021.773103
  10. Multifunctional behavior of CNT- and CB-based composite beams vol.296, pp.None, 2015, https://doi.org/10.1016/j.conbuildmat.2021.123453