참고문헌
- Abu-Al-Rub, R.K., Tyson, B.M., Yazdanbakhsh, A. and Grasley, Z. (2012), "Mechanical properties of nanocomposite cement incorporating surface-treated and untreated carbon nanotubes and carbon nanofibres", ASCE J Nanomech Micromech, 2(1), 1-6. https://doi.org/10.1061/(ASCE)NM.2153-5477.0000041
- Aglan, H.; Morsy, M., Allie, A. and Fouad, F. (2009), "Evaluation of fiber reinforced nanostructured Perlite-cementitious surface compound for building skin applications", Constr. Build. Mater., 23, 138-145. https://doi.org/10.1016/j.conbuildmat.2008.01.010
- Alexandre Silva de Vargas; Denise.C.C. Dal Molin; A ngela.B. Masuero; Antonio.C.F. Vilela; Joao Castro-Gomes; Ruby M. Gutierrez (2014), "Strength development of alkali-activated fly ash produced with combined NAOH and CA(OH)2 activators", Cement Concrete Compos., 53, 341-349. https://doi.org/10.1016/j.cemconcomp.2014.06.012
- Ando, Y. (1994), "the preparation of carbon nanotubes", Full Sci Technol., 173-180.
- Andrews, R., Jacques, D., Qian, D. and Dickey, E.C. (2001), Carbon, 39, 1681-1687. https://doi.org/10.1016/S0008-6223(00)00301-8
- ASTM C109M-12 (2012), "Standard test method for compressive strength of hydraulic cement mortars".
- ASTM C140-01, "Standard test methods for sampling and testing concrete masonry units and related units",(2001).
- Bakharev T. (2004), "Resistance of geopolymer materials to acid attack", Cement Concrete Res., 35(4), 658-670. https://doi.org/10.1016/j.cemconres.2004.06.005
- Bakharev, T., Sanjayan, J.G. and Cheng, Y.B. (1999), "Effect of elevated temperature curing on properties of alkali-activated slag concrete", Cement Concrete Res., 29, 1619-1625. https://doi.org/10.1016/S0008-8846(99)00143-X
- Ben Haha, M.; Le Saout, G. l; Winnefeld, F. and Lothenbach, B. (2011), "Influence of Activator Type on Hydration Kinetics, Hydrate Assemblage and Microstructural Development of Alkali Activated Blast-Furnace Slags", Cement Concrete Res., 41(3), 301-310. https://doi.org/10.1016/j.cemconres.2010.11.016
- Ben Haha, M., Lothenbach, B., Le Saout, G.l. and Winnefeld, F. (2011), "Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag - Part I: Effect of MgO", Cement Concrete Res., 41(9), 955-963. https://doi.org/10.1016/j.cemconres.2011.05.002
- Chen, S.J., Collins, F.G., Macleod, A.J.N., Pan Z., Duan, W.H. and Wang, C.M. (2011), "Carbon nanotube-cement: a retrospect", ISE J. Part A: Civil Struct. Eng., 4(4), 254-265. https://doi.org/10.1080/19373260.2011.615474
- Coleman, N.J., Khan, U., Blau, W.J. and Gun-ko, Y.K. (2006), "Small but strong: a review of the mechanical properties of carbon nanotube-polymer composites", Carbon, 44(9), 1624-1652. https://doi.org/10.1016/j.carbon.2006.02.038
- Collins, F., Lambert, F. and Duan, W.H. (2012), "The influence of admixtures on the dispersion, workability, and strength of carbon nanotube-OPC paste mixtures", Cement Concrete Compos., 34(9), 1067-1074. https://doi.org/10.1016/j.cemconcomp.2012.06.007
- Collins, F., Lambert, F. and Duan, W.H. (2012), "The influence of admixtures on the dispersion, workability, and strength of carbon nanotube-OPC paste mixtures", Cement Concrete Compos., 34(9), 1067-1074. https://doi.org/10.1016/j.cemconcomp.2012.06.007
- Duxson, P.; Provis, J.L., Lukey, G.C., van Deventer, J.S.J., Separovic, F. and Gan, Z.H. (2006), "39K NMR of Free Potassium in Geopolymers", Ind. Eng. Chem. Res., 45(26), 9208-9210. https://doi.org/10.1021/ie060838g
- El-Sayed, H.A.; Abo El-Enein, S.A.; Khater, H.M. and Hasanein, S.A. (2011), "Resistance of alkali activated water cooled slag geopolymer to sulfate attack", Ceramics - Silikaty, 55, 153-160.
- Fernandez-Diaz, L., Fernandez-Gonzalez, A . and Prieto, M. (2010), "The role of sulfate groups in controlling CaCO3 polymorphism", Geochim Cosmochim Acta, 74(2), 6064-6076. https://doi.org/10.1016/j.gca.2010.08.010
- Fu, K., Huang, W. and Lin, Y. (2001), "Defunctionalization of functionalized carbon nanotubes", Nano Letters, 1(8): 439-441. https://doi.org/10.1021/nl010040g
- Gao, D., Sturm, M. and Mo, Y.L. (2009), "Electrical resistance of carbon-nanofibre concrete", Smart Mater Struct., 18(9), 1-7.
- Garcia Lodeiro, I.; Macphee, D.E., Palomo, A. and Fernaandez-Jimenez, A. (2009), "Effect of Alkalis on Fresh C-S-H Gels. FTIR Analysis", Cement Concrete Res., 39, 147-153. https://doi.org/10.1016/j.cemconres.2009.01.003
- Garcia Lodeiro, I.; Palomo, A., Fernaandez-Jimenez, A. and Macphee, D.E. (2011), "Compatibility studies between N-A-S-H and C-A-S-H Gels. study in the ternary diagram Na2O-CaO-Al2O3-SiO2-H2O", Cement Concrete Res., 41(9), 923-931. https://doi.org/10.1016/j.cemconres.2011.05.006
- Garcia-Lodeiro, I.; Fernandez-Jimenez, A., Palomo, A. and Macphee, D.E. (2010), "Effect on fresh CS-H gels of the simultaneous addition of alkali and aluminum, Cement Concrete Res., 40, 27-32. https://doi.org/10.1016/j.cemconres.2009.08.004
- Ghandi Rouainia and Kamal Djeghaba (2008), "Evaluation of Young's modulus of single walled Carbon Nanotubes (SWNT) Reinforced Concrete Composite", J. Eng. Appl. Sci., 3(6), 504-515.
- Hamon, M.A., Hui, H. and Bhowmik, P. (2002), "Ester-functionalized soluble single-walled carbon nanotubes", Appl. Phys. A., 74(3), 333-338.
- Han, B., Yu X. and Ou, J. (2011), "Multifunctional and smart carbon nanotube reinforced cement-based materials", Nanotechnology in Civil Infrastructure, Springer, 1-47.
- Hanjitsuwan, S., Chindaprasirt, P. and Pimraksa, K. (2011), "Electrical conductivity and dielectric property of fly ash geopolymer pastes", Int. J. Miner. Metall. Mater., 18(1), 94-99. https://doi.org/10.1007/s12613-011-0406-0
- Hardjito, D. and Rangan, B.V. (2005), Development and Properties of Low-Calcium Fly Ash Based Geopolymer Concrete, Research Report GC1, Curtin University of Technology Perth, Australia.
- Heister, E., Lamprecht, C., Neves, V., Tilmaciu, C., Datas, L. and Emmanuel Flahaut, E. (2010), "Higher dispersion efficacy of functionalized carbon nanotubes in chemical and biological environments", ACS Nano, 4(5), 2615-2626. https://doi.org/10.1021/nn100069k
피인용 문헌
- Modeling the alkali aggregate reaction expansion in concrete vol.16, pp.1, 2015, https://doi.org/10.12989/cac.2015.16.1.037
- Utilization of some industrial wastes for eco-friendly cement production vol.12, 2017, https://doi.org/10.1016/j.susmat.2017.03.001
- Development of geopolymer with pyroclastic flow deposit called Shirasu vol.4, pp.3, 2015, https://doi.org/10.12989/amr.2015.4.3.179
- Microstructure and mechanical properties of a metakaolinite-based geopolymer nanocomposite reinforced with carbon nanotubes vol.42, pp.14, 2016, https://doi.org/10.1016/j.ceramint.2016.06.080
- Intelligently designed fly-ash based hybrid composites with very high hardness and Young’s modulus vol.158, 2018, https://doi.org/10.1016/j.conbuildmat.2017.10.049
- Synthesis, processing, characterization, and applications of red mud/carbon nanotube composites vol.42, pp.15, 2016, https://doi.org/10.1016/j.ceramint.2016.07.146
- Investigation on the Mechanical Properties of a Cement-Based Material Containing Carbon Nanotube under Drying and Freeze-Thaw Conditions vol.8, pp.12, 2015, https://doi.org/10.3390/ma8125491
- Amelioration of freeze thaw damage of concrete with multi-walled carbon nano tubes vol.18, pp.1, 2021, https://doi.org/10.1108/wje-08-2020-0345
- Hybrid Effect of PVA Fibre and Carbon Nanotube on the Mechanical Properties and Microstructure of Geopolymers vol.8, pp.None, 2015, https://doi.org/10.3389/fmats.2021.773103
- Multifunctional behavior of CNT- and CB-based composite beams vol.296, pp.None, 2015, https://doi.org/10.1016/j.conbuildmat.2021.123453