DOI QR코드

DOI QR Code

Luminescence Properties of Anthracene Chromophores in Cyclosiloxane-Based Hybrid Polymer Films

  • Demirci, Ali (Institute of Multidisciplinary Research for Advanced Materials, Tohoku University) ;
  • Yamamoto, Shunsuke (Institute of Multidisciplinary Research for Advanced Materials, Tohoku University) ;
  • Matsui, Jun (Department of Material and Biological Chemistry, Faculty of Science, Yamagata University) ;
  • Miyashita, Tokuji (Institute of Multidisciplinary Research for Advanced Materials, Tohoku University) ;
  • Mitsuishi, Masaya (Institute of Multidisciplinary Research for Advanced Materials, Tohoku University)
  • 투고 : 2015.03.04
  • 심사 : 2015.03.18
  • 발행 : 2015.03.01

초록

Luminescence properties of anthracene chromophores were investigated. Anthracene chromophores were incorporated in cyclosiloxane-based hybrid polymers through one-pot hydrosilylation reaction. Using four-armed cyclosiloxanes, divinylterminated siloxane monomers, and 9-vinylanthracenes, anthracene-labeled hybrid polymers were prepared. Free-standing hybrid polymer films were prepared successfully by doctor-blade method and thermal treatment. The polymer films exhibit strong blue fluorescence from anthracene and its fluorescence lifetime was not influenced by the temperature, indicating that the movement of anthracene chromophores was restrained in cyclosiloxane-based hybrid polymer films.

키워드

참고문헌

  1. O'Neill, M.; Kelly, S. M. Adv. Mater. 2011, 23, 566-584. https://doi.org/10.1002/adma.201002884
  2. Clark, J.; Lanzani, G. Nat. Photonics 2010, 4, 438-446. https://doi.org/10.1038/nphoton.2010.160
  3. Chen, B.; Jiang, Y. B.; He, B. R.; Zhou, J.; Sung, H. H. Y.; Williams, I. D.; Lu, P.; Kwok, H. S.; Qiu, H. Y.; Zhao, Z. J.; Tang, B. Z. Chem.-Asian J. 2014, 9, 2937-2945. https://doi.org/10.1002/asia.201402468
  4. Liu, C. C.; Cai, W. Z.; Guan, X.; Duan, C. H.; Xue, Q. F.; Ying, L.; Huang, F.; Cao, Y. Polym. Chem. 2013, 4, 3949-3958. https://doi.org/10.1039/c3py00430a
  5. Li, T. S.; Chen, J. F.; Mitsuishi, M.; Miyashita, T. J. Mater. Chem. 2003, 13, 1565-1569. https://doi.org/10.1039/b300686g
  6. Mitsuishi, M.; Tanuma, T.; Matsui, J.; Chen, J. F.; Miyashita, T. Langmuir 2001, 17, 7449-7451. https://doi.org/10.1021/la010822p
  7. Matsukawa, K.; Watanabe, M.; Hamada, T.; Nagase, T.; Naito, H. Int. J. Polym. Sci. 2012,.2012, 852063.
  8. Kovtyukhova, N. I.; Mallouk, T. E.; Mayer, T. S. Adv. Mater. 2003, 15, 780-785. https://doi.org/10.1002/adma.200304701
  9. Yoshida, M.; Prasad, P. N. Chem. Mater. 1996, 8, 235-241. https://doi.org/10.1021/cm950331o
  10. Lebeau, B.; Innocenzi, P. Chem. Soc. Rev. 2011, 40, 886-906. https://doi.org/10.1039/c0cs00106f
  11. Menaa, B.; Takahashi, M.; Tokuda, Y.; Yoko, T. J. Sol-Gel Sci. Technol. 2006, 39, 185-194. https://doi.org/10.1007/s10971-006-7650-1
  12. Tanaka, K.; Inafuku, K.; Chujo, Y. Chem. Commun. 2010, 46, 4378-4380. https://doi.org/10.1039/c0cc00266f
  13. Demirci, A.; Yamamoto, S.; Matsui, J.; Miyashita, T.;Mitsuishi, M. Polym. Chem. 2015, 6, 2695-2706. https://doi.org/10.1039/C5PY00018A
  14. Demirci, A.; Matsui, J.; Mitsuishi, M.; Watanabe, A.; Miyashita, T. Mol. Cryst. Liq. Cryst. 2013, 579, 34-38. https://doi.org/10.1080/15421406.2013.805066
  15. Suzuki, K.; Kobayashi, A.; Kaneko, S.; Takehira, K.; Yoshihara, T.; Ishida, H.; Shiina, Y.; Oishic, S.; Tobita, S. Phys. Chem. Chem. Phys. 2009, 11, 9850-9860. https://doi.org/10.1039/b912178a
  16. Wang, X. D.; Wolfbeis, O. S. Chem. Soc. Rev. 2014, 43, 3666-3761. https://doi.org/10.1039/C4CS00039K
  17. Bouas-Laurent, H.; Castellan, A.; Desvergne, J. P.; Lapouyade, R. Chem. Soc. Rev. 2001, 30, 248-263. https://doi.org/10.1039/b006013p
  18. Lakowicz, J. R.; Weber, G. Biochemistry 1973, 12, 4161-4170. https://doi.org/10.1021/bi00745a020
  19. Araki, H.; Naka, K. J. Polym. Sci. Part A: Polym. Chem. 2012, 50, 4170-4181. https://doi.org/10.1002/pola.26241
  20. Goto, Y.; Ohsuna, T.; Mizoshita, N.; Tani, T.; Inagaki, S. Solid State Sci. 2011, 13, 729-735. https://doi.org/10.1016/j.solidstatesciences.2010.05.003