DOI QR코드

DOI QR Code

Preventive Effect of the Korean Traditional Health Drink (Taemyeongcheong) on Acetaminophen-Induced Hepatic Damage in ICR Mice

  • Yi, Ruo-Kun (Department of Food Science and Nutrition, Pusan National University) ;
  • Song, Jia-Le (Department of Food Science and Nutrition, Pusan National University) ;
  • Lim, Yaung-Iee (Department of Food and Nutrition, Sungshin Women's University) ;
  • Kim, Yong-Kyu (TaeMyeongCheong Co.) ;
  • Park, Kun-Young (Department of Food Science and Nutrition, Pusan National University)
  • Received : 2015.01.20
  • Accepted : 2015.03.12
  • Published : 2015.03.31

Abstract

This study was to investigate the preventive effect of taemyeongcheong (TMC, a Korean traditional health drink) on acetaminophen (APAP, 800 mg/kg BW)-induced hepatic damage in ICR mice. TMC is prepared from Saururus chinensis, Taraxacum officinale, Zingiber officinale, Cirsium setidens, Salicornia herbacea, and Glycyrrhizae. A high dose of TMC (500 mg/kg BW) was found to decrease APAP-induced increases in serum levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase. TMC pretreatment also increased the hepatic levels of hepatic catalase, superoxide dismutase, glutathione peroxidase, and glutathione, and reduced serum levels of the inflammatory cytokines tumor necrosis factor (TNF)-${\alpha}$ and interleukin (IL)-6 in mice administered APAP (P<0.05). TMC (500 mg/kg BW) reduced hepatic mRNA levels of TNF-${\alpha}$, IL-$1{\beta}$, IL-6, COX-2, and iNOS by 87%, 84%, 89%, 85%, and 88%, respectively, in mice treated with APAP (P<0.05). Furthermore, histological observations suggested TMC pretreatment dose-dependently prevented APAP-induced hepatocyte damage. These results suggest that TMC could be used as a functional health drink to prevent hepatic damage.

Keywords

References

  1. Mitchell JR, Jollow DJ, Potter WZ, Davis DC, Gillette JR, Brodie BB. 1973. Acetaminophen-induced hepatic necrosis. I. Role of drug metabolism. J Pharmacol Exp Ther 187: 185-194.
  2. Dahlin DC, Miwa GT, Lu AY, Nelson SD. 1984. N-acetyl-p-benzoquinone imine: a cytochrome P-450-mediated oxidation product of acetaminophen. Proc Natl Acad Sci USA 81: 1327-1331. https://doi.org/10.1073/pnas.81.5.1327
  3. Nelson SD. 1990. Molecular mechanisms of the hepatotoxicity caused by acetaminophen. Semin Liver Dis 10: 267-278. https://doi.org/10.1055/s-2008-1040482
  4. Lores Arnaiz S, Llesuy S, Cutrin JC, Boveris A. 1995. Oxidative stress by acute acetaminophen administration in mouse liver. Free Radic Biol Med 19: 303-310. https://doi.org/10.1016/0891-5849(95)00023-Q
  5. Fujiwara K, Ohta Y, Ogata I. 1987. Treatment trial of traditional oriental medicine in chronic viral hepatitis. In New Trends in Peptic Ulcer and Chronic Hepatitis: Chronic Hepatitis. Excerpta Medica, Tokyo, Japan. p 141-146.
  6. Kim SJ. 2012. Preventive effects of beopje ginger and taemyeongcheong on in vivo gastritis and colitis. MS Thesis. Pusan National University, Busan, Korea.
  7. Wang L, Cheng D, Wang H, Di L, Zhou X, Xu T, Yang X, Liu Y. 2009. The hepatoprotective and antifibrotic effects of Saururus chinensis against carbon tetrachloride induced hepatic fibrosis in rats. J Ethnopharmacol 126: 487-491. https://doi.org/10.1016/j.jep.2009.09.009
  8. Ajith TA, Hema U, Aswathy MS. 2007. Zingiber officinale Roscoe prevents acetaminophen-induced acute hepatotoxicity by enhancing hepatic antioxidant status. Food Chem Toxicol 45: 2267-2272. https://doi.org/10.1016/j.fct.2007.06.001
  9. Yemitan OK, Izegbu MC. 2006. Protective effects of Zingiber officinale (Zingiberaceae) against carbon tetrachloride and acetaminophen-induced hepatotoxicity in rats. Phytother Res 11: 997-1002.
  10. Yoon YH, Yoo SN, Yoon HG, Park JJ, Lee YH, Kim SO, Oh KT, Lee JM, Cho HY, Jun WJ. 2010. In vitro and in vivo hepatoprotective effects of the aqueous extract from Taraxacum officinale (dandelion) root against alcohol-induced oxidative stress. Food Chem Toxicol 48: 1632-1637. https://doi.org/10.1016/j.fct.2010.03.037
  11. Yin G, Cao L, Xu P, Jeney G, Nakao M, Lu C. 2011. Hepatoprotective and antioxidant effects of Glycyrrhiza glabra extract against carbon tetrachloride ($CCl_4$)-induced hepatocyte damage in common carp (Cyprinus carpio). Fish Physiol Biochem 37: 209-216. https://doi.org/10.1007/s10695-010-9436-1
  12. James LP, Mayeux PR, Hinson JA. 2003. Acetaminopheninduced hepatotoxicity. Drug Metab Dispos 31: 1499-1506. https://doi.org/10.1124/dmd.31.12.1499
  13. Martin-Murphy BV, Holt MP, Ju C. 2010. The role of damage associated molecular pattern molecules in acetaminopheninduced liver injury in mice. Toxicol Lett 192: 387-394. https://doi.org/10.1016/j.toxlet.2009.11.016
  14. Ansari RA, Tripathi SC, Patnaik GK, Dhawan BN. 1991. Antihepatotoxic properties of picroliv: an active fraction from rhizomes of Picrorhiza kurrooa. J Ethnopharmacol 34: 61-68. https://doi.org/10.1016/0378-8741(91)90189-K
  15. Bessems JGM, Vermeulen NPE. 2001. Paracetamol (acetaminophen)-induced toxicity: molecular and biochemical mechanisms, analogues and protective approaches. Crit Rev Toxicol 31: 55-138. https://doi.org/10.1080/20014091111677
  16. Kyle ME, Miccadei S, Nakae D, Farber JL. 1987. Superoxide dismutase and catalase protect cultured hepatocytes from the cytotoxicity of acetaminophen. Biochem Biophys Res Commun 149: 889-896. https://doi.org/10.1016/0006-291X(87)90491-8
  17. Hochstein P, Atallah AS. 1988. The nature of oxidants and antioxidant systems in the inhibition of mutation and cancer. Mutat Res 202: 363-375. https://doi.org/10.1016/0027-5107(88)90198-4
  18. Kaplowitz N, Tsukamoto H. 1996. Oxidative stress and liver disease. Prog Liver Dis 14: 131-159.
  19. Halliwell B, Gutteridge JM. 1984. Lipid peroxidation, oxygen radicals, cell damage, and antioxidant therapy. Lancet 1: 1396-1397.
  20. Halliwell B. 2012. Free radicals and antioxidants: updating a personal view. Nutr Rev 70: 257-265. https://doi.org/10.1111/j.1753-4887.2012.00476.x
  21. Zakowski JJ, Tappel AL. 1978. Purification and properties of rat liver mitochondrial glutathione peroxidase. Biochim Biophys Acta 526: 65-76. https://doi.org/10.1016/0005-2744(78)90290-5
  22. Ross D. 1988. Glutathione, free radicals and chemotherapeutic agents: mechanisms of free-radical induced toxicity and glutathione-dependent protection. Pharmacol Ther 37: 231-249. https://doi.org/10.1016/0163-7258(88)90027-7
  23. Blazka ME, Elwell MR, Holladay SD, Wilson RE, Luster MI. 1996. Histopathology of acetaminophen-induced liver changes: role of interleukin $1{\alpha}$ and tumor necrosis ${\alpha}$. Toxicol Pathol 24: 181-189. https://doi.org/10.1177/019262339602400206
  24. Ishida Y, Kondo T, Ohshima T, Fujiwara H, Iwakura Y, Mukaida N. 2002. A pivotal involvement of IFN-${\gamma}$ in the pathogenesis of acetaminophen-induced acute liver injury. FASEB J 16: 1227-1236. https://doi.org/10.1096/fj.02-0046com
  25. Agarwal S, Piesco NP. 1994. Poly ADP-ribosylation of a 90-kDa protein is involved in TNF-${\alpha}$-mediated cytotoxicity. J Immunol 153: 473-481.
  26. Reilly TP, Brady JN, Marchick MR, Bourdi M, George JW, Radonovich MF, Pise-Masison CA, Pohl LR. 2001. A protective role for cyclooxygenase-2 in drug-induced liver injury in mice. Chem Res Toxicol 14: 1620-1628. https://doi.org/10.1021/tx0155505
  27. Lee WS, Beak YI , Kim JR, Cho KH, Sok DE, Jeong TS. 2004. Antioxidant activities of a new lignan and a neolignan from Saururus chinensis. Bioorg Med Chem Lett 14: 5623-5628. https://doi.org/10.1016/j.bmcl.2004.08.054
  28. Sung SH, Lee EJ, Cho JH, Kim HS, Kim YC. 2000. Sauchinone, a lignan from Saururus chinensis, attenuates $CCl_4$-induced toxicity in primary cultures of rat hepatocytes. Biol Pharm Bull 23: 666-668. https://doi.org/10.1248/bpb.23.666
  29. Hu C, Kitts DD. 2004. Luteolin and luteolin-7-O-glucoside from dandelion flower suppress iNOS and COX-2 in RAW264.7 cells. Mol Cell Biochem 265: 107-113. https://doi.org/10.1023/B:MCBI.0000044364.73144.fe
  30. Masuda Y, Kikuzaki H, Hisamoto M, Nakatani N. 2004. Antioxidant properties of gingerol related compounds from ginger. Biofactors 21: 293-296. https://doi.org/10.1002/biof.552210157
  31. Yoo YM, Nam JH, Kim MY, Choi JW, Park HJ. 2008. Pectolinarin and pectolinarigenin of Cirsium setidens prevent the hepatic injury in rats caused by D-galactosamine via an antioxidant mechanism. Biol Pharm Bull 31: 760-764. https://doi.org/10.1248/bpb.31.760
  32. Hwang YP, Yun HJ, Chun HK, Chung YC, Kim HK, Jeong MH, Yoon TR, Jeong HG. 2009. Protective mechanisms of 3-caffeoyl, 4-dihydrocaffeoyl quinic acid from Salicornia herbacea against tert-butyl hydroperoxide-induced oxidative damage. Chem Biol Interact 181: 366-367. https://doi.org/10.1016/j.cbi.2009.07.017
  33. Nagai T, Egashira T, Yamanaka Y, Kohno M. 1991. The protective effect of glycyrrhizin against injury of the liver caused by ischemia-reperfusion. Arch Environ Contam Toxicol 20: 432-436. https://doi.org/10.1007/BF01064416
  34. Kiso Y, Tohkin M, Hikino H, Hattori M, Sakamoto T, Namba T. 1984. Mechanism of antihepatotoxic activity of glycyrrhizin. I: effect on free radical generation and lipid peroxidation. Planta Med 50: 298-302. https://doi.org/10.1055/s-2007-969714
  35. Finney RS, Somers GF. 1958. The antiinflammatory activity of glycyrrhetinic acid and derivatives. J Pharm Pharmacol 10: 613-620. https://doi.org/10.1111/j.2042-7158.1958.tb10349.x

Cited by

  1. Salicornia: evaluating the halophytic extremophile as a food and a pharmaceutical candidate vol.6, pp.1, 2016, https://doi.org/10.1007/s13205-016-0418-6
  2. Inhibitory effect of Taemyeongcheong on allergic reactions vol.6, pp.2, 2016, https://doi.org/10.5667/tang.2016.0015
  3. An Atopic Preventive Drink (APD) reduces Th2 cytokines in LPS-treated RAW 264.7 cells vol.7, pp.3, 2015, https://doi.org/10.5667/tang.2017.0014
  4. Rumex crispus and Cordyceps militaris Mixture Ameliorates Production of Pro-Inflammatory Cytokines Induced by Lipopolysaccharide in C57BL/6 Mice Splenocytes vol.23, pp.4, 2015, https://doi.org/10.3746/pnf.2018.23.4.374
  5. Sanghuangporus sanghuang Mycelium Prevents Paracetamol-Induced Hepatotoxicity through Regulating the MAPK/NF-κB, Keap1/Nrf2/HO-1, TLR4/PI3K/Akt, and CaMKKβ/LKB1/AMPK Pathways and Suppressin vol.10, pp.6, 2015, https://doi.org/10.3390/antiox10060897