DOI QR코드

DOI QR Code

Physicochemical Properties of Fish-meat Gels Prepared from Farmed-fish

해수어를 활용한 연제품의 제조 및 물리화학적 특성

  • Kim, Hyung Kwang (EverBlueSea Co., Ltd.) ;
  • Kim, Se Jong (EverBlueSea Co., Ltd.) ;
  • Karadeniz, Fatih (Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University) ;
  • Kwon, Myeong Sook (Department of Food and Nutrition, College of Medical and Life Science, Silla University) ;
  • Bae, Min-Joo (Department of Food and Nutrition, College of Medical and Life Science, Silla University) ;
  • Gao, Ya (Department of Food and Nutrition, College of Medical and Life Science, Silla University) ;
  • Lee, Seul-Gi (Department of Food and Nutrition, College of Medical and Life Science, Silla University) ;
  • Jang, Byeong Guen (EverBlueSea Co., Ltd.) ;
  • Jung, Jun Mo (EverBlueSea Co., Ltd.) ;
  • Kim, Seo yeon (EverBlueSea Co., Ltd.) ;
  • Kong, Chang-Suk (Marine Biotechnology Center for Pharmaceuticals and Foods, Silla University)
  • Received : 2015.07.31
  • Accepted : 2015.11.25
  • Published : 2015.11.30

Abstract

Fish-meat gel is being produced mostly relying on surimi and raw materials imported from Southeast Asia and North America and present in small amount in local markets. In this study, common farmed local fishes were examined as stable and reliable sources of surimi for fish-meat gel production. For testing, five main farmed-fish of Korea, namely; Bastard halibut (Paralichthys olivaceus), Red sea bream (Pagrus major), Korean rockfish (Sebastes schlegeli), Common mulle (Mugil cephalus), and Finespotted flounder (Pleuronichthys cornutus) were used following a traditional washing process. The quality of the surimi was determined by the values of water content, whiteness index, gel strength and impurity. Accordingly, fish-meat gel and surimi quality experiments were carried out by measuring compressive and texture properties, expressible moisture content, Hunter color scale values and SDS-page protein patterns. Also gel characteristics were compared with that of FA and RA grade surimi (Alaska Pollock). Fish-meat gels were prepared by salt mincing the farmed-fish surimi with NaCl (2% w/w) and moisture adjustment to 84% by ice water adding. Prepared fish-meat paste was filled into 20-25 cm long polyvinylidene chloride casings and heated at 90℃ for 20 min. The whiteness values of fish-meat gels produced from surimi were increased by using farmed-fish and became comparable to that of FA Alaska Pollock gel. Among all tested farmed-fish, P. olivaceus and P. major exhibited better properties than RA Alaska Pollock and similar properties to FA Alaska Pollock. Therefore, current data suggests that fish farming can be an efficient and sustainable fish-meat source for fish-meat gel production in Korea.

연제품 제조에 이용되는 어육원료는 저가의 연육이 국내에서 일부 생산되고 있으며 대부분은 동남아산 또는 북아메리카산 등의 수입산에 의존하고 있다. 본 연구에서는 연제품용 어육 원료의 안정적인 수급과 고품질 연제품 개발을 위한 방안으로 우리나라에서 주로 양식되고 있는 어종의 고급 연육 및 연제품 소재로서의 가능성을 검토하였다. 양식어종인 광어(Paralichthys olivaceus), 도미(Pagrus major), 조피볼락(Sebastes schlegeli), 숭어(Mugil cephalus), 도다리(Pleuronichthys cornutus)를 원료로 하여 전통 수세법으로 연육을 제조하였다. 연육의 품질과 등급은 수분함량, 백색도, 겔 강도, 불순물의 함량 등에 의해 결정되어진다. 따라서 이들 해수어 유래 연육의 겔 형성능 및 품질은 겔 강도, 텍스쳐 실험, 백색도, 수분유출정도 및 SDS-page pattern 측정을 통해 검토하였다. 또한 이들 결과는 명태연육(FA급과 RA급)의 겔 특성과 비교하였다. 겔 특성을 검토하기 위해 미리 준비한 5 종류의 해수어 유래 연육에 2% NaCl를 첨가하여 소금갈이를 한 후 전체 수분함량이 84%가 되도록 졸 형태로 제조하였다. 졸 형태의 연육을 polyvinylidene chloride 필름에 20-25 cm 길이로 충진한 후 90℃에서 20분간 가열하여 소시지 형태의 어육 겔을 제조하였다. 연육을 이용한 어육 겔의 제조에 의해 연육의 겔 강도와 백도는 증가하였다. 해수어 유래 연육의 겔 특성을 비교한 결과 광어와 도미가 가장 높은 겔 강도와 파단 강도를 나타내었으며, 수분 이수율은 광어에서 가장 낮게 나타났다. 전체적으로 해수어 유래 연육은 RA급 명태연육에 비해 높은 겔 형성능을 나타내었으며, 광어와 도미는 FA급 명태연육과 비슷한 정도의 겔 특성을 나타내었다. 이상의 결과로부터 광어와 도미를 이용한 고품질 연제품의 개발 가능성을 확인할 수 있었다.

Keywords

References

  1. Benjakul, S., Visessanguan, W. and Kwalumtharn, Y. 2004. The effect of whitening agents on the gel-forming ability and whiteness of surimi. Int. J. Food Sci. Technol. 39, 773-781. https://doi.org/10.1111/j.1365-2621.2004.00843.x
  2. Benjakul, S., Visessanguan, W. and Srivilai, C. 2001. Gel properties of bigeye snapper (Priacanthus tayenus) surimi as affected by setting and porcine plasma proteins. J. Food Qual. 24, 453-471. https://doi.org/10.1111/j.1745-4557.2001.tb00622.x
  3. Bostock, J., McAndrew, B., Richards, R., Jauncey, K., Telfer, T., Lorenzen, K. and Corner, R. 2010. Aquaculture: global status and trends. Phil. Trans. R. Soc. B. 365, 2897-2912. https://doi.org/10.1098/rstb.2010.0170
  4. Campo-Deaño, L. and Tovar, C. 2009. The effect of egg albumen on the viscoelasticity of crab sticks made from Alaska Pollock and Pacific Whiting surimi. Food Hydrocolloid. 23, 1641-1646. https://doi.org/10.1016/j.foodhyd.2009.03.013
  5. Cardoso, C., Mendes, R., Vaz-Pires, P. and Nunes, M. L. 2010. Effect of salt and MTGase on the production of high quality gels from farmed sea bass. J. Food Eng. 101, 98-105. https://doi.org/10.1016/j.jfoodeng.2010.06.017
  6. Chinabhark, K., Benjakul, S. and Prodpran, T. 2007. Effect of pH on the properties of protein-based film from bigeye snapper (Priacanthus tayenus) surimi. Bioresour. Technol. 98, 221-225. https://doi.org/10.1016/j.biortech.2005.11.012
  7. Daniel, C. R., Cross, A. J., Koebnick, C. and Sinha, R. 2011. Trends in meat consumption in the USA. Public Health Nutr. 14, 575-583. https://doi.org/10.1017/S1368980010002077
  8. Duangmal, K. and Taluengphol, A. 2010. Effect of protein additives, sodium ascorbate, and microbial transglutaminase on the texture and colour of red tilapia fish-meat gels. Int. J. Food Sci. Technol. 45, 48-55.
  9. Huff-Lonergan, E. and Lonergan, S. M. 2005. Mechanisms of water-holding capacity of meat: The role of postmortem biochemical and structural changes. Meat Sci. 71, 194-204. https://doi.org/10.1016/j.meatsci.2005.04.022
  10. Huynh, M. D. and Kitts, D. D. 2009. Evaluating nutritional quality of pacific fish species from fatty acid signatures. Food Chem. 114, 912-918. https://doi.org/10.1016/j.foodchem.2008.10.038
  11. Jin, S. K., Kim, I. S., Kim, S. J., Jeong, K. J., Choi, Y. J. and Hur, S. J. 2007. Effect of muscle type and washing times on physico-chemical characteristics and qualities of surimi. J. Food Eng. 81, 618-623. https://doi.org/10.1016/j.jfoodeng.2007.01.001
  12. Keskin, E. and Atar, H. H. 2012. Molecular identification of fish species from surimi based products labeled as Alaskan Pollock. J. Appl. Inchtyol. 28, 811-814. https://doi.org/10.1111/j.1439-0426.2012.02031.x
  13. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0
  14. Lanier, T. C., Yongsawatdigul, J. and Carvajal-Rondanelli, P. 2013. Fish-meat gelsation Chemistry, pp. 101-140. In: Park, J. W. (ed.), Surimi and surimi seafood. CRC Press: Boca Raton, FL, USA.
  15. Luo, Y. K., Kuwahara, R., Kaneniwa, M., Murata, Y. and Yokoyama, M. 2001. Comparison of gel properties of surimi from Alaska Pollock and three freshwater fish species: Effects of thermal processing and protein concentration. Food Sci. 66, 548-554. https://doi.org/10.1111/j.1365-2621.2001.tb04600.x
  16. Morales, O. G., Ramirez, J. A., Vivanco, D. I. and Vazquez, M. 2001. Surimi of fish species from the Gulf of Mexico: evaluation of the setting phenomenon. Food Chem. 75, 43-48. https://doi.org/10.1016/S0308-8146(01)00181-9
  17. Offer, G. and Trinick, J. 1983. On the mechanism of water holding in meat: the swelling and shrinking of myofibrils. Meat Sci. 8, 245-281. https://doi.org/10.1016/0309-1740(83)90013-X
  18. Oken, E., Choi, A. L., Karagas, M. R., Mariën, K., Rheinberger, C. M., Schoeny, R. and Korrick, S. 2012. Which fish should I eat? Perspectives influencing fish consumption choices. Environ. Health Perspect. 120, 790. https://doi.org/10.1289/ehp.1104500
  19. Olsen, R. L. and Hasan, M. R. 2012. A limited supply of fishmeal: Impact on future increases in global aquaculture production. Trends Food Sci. Tech. 27, 120-128. https://doi.org/10.1016/j.tifs.2012.06.003
  20. Pan, J., Shen, H. and Luo, Y. 2010. Cryoprotective effects of trehalose on grass carp (Ctenopharyngodon idellus) surimi during frozen storage. J. Food Process. Preserv. 34, 715-727.
  21. Pietrowski, B. N., Tahergorabi, R., Matak, K. E., Tou, J. C. and Jaczynski, J. 2011. Chemical properties of surimi seafood nutrified with ω-3 rich oils. Food Chem. 129, 912-919. https://doi.org/10.1016/j.foodchem.2011.05.044
  22. Rawdkuen, S., Benjakul, S., Visessanguan, W. and Lanier, T. C. 2004. Chicken plasma protein affects gelation of surimi from bigeye snapper (Priacanthus tayenus). Food Hydrocolloid. 18, 259-270. https://doi.org/10.1016/S0268-005X(03)00082-1
  23. Shaviklo, A. R. and Fahim, A. 2014. Quality improvement of silver carp fingers by optimizing the level of major elements influencing texture. Int. Food Res. J. 21, 283-290.
  24. Shiku, Y., Hamaguchi, P. Y., Benjakul, S., Visessanguan, W. and Tanaka, M. 2004. Effect of surimi quality on properties of edible films based on Alaska Pollack. Food Chem. 86, 493-499. https://doi.org/10.1016/j.foodchem.2003.09.022
  25. Taskaya, L., Chen, Y. C. and Jaczynski, J. 2010. Color improvement by titanium dioxide and its effect on gelation and texture of proteins recovered from whole fish using isoelectric solubilization/precipitation. LWT-Food Sci. Technol. 43, 401-408. https://doi.org/10.1016/j.lwt.2009.08.021
  26. Trondsen, T. 1998. Blue whiting surimi: new perspectives on the market value. Fish. Res. 34, 1-15. https://doi.org/10.1016/S0165-7836(97)00088-X
  27. Yoon, K. S. and Lee, C. M. 1990. Cryoprotectant effects in surimi and surimi/mince based extruded products. J. Food Sci. 55, 1210-1216. https://doi.org/10.1111/j.1365-2621.1990.tb03900.x

Cited by

  1. Recombinant human bone morphogenetic protein-2 loaded porous β-tricalcium phosphate microsphere-hyaluronic acid composites promoted osseointegration around titanium implants pp.1563-535X, 2018, https://doi.org/10.1080/00914037.2018.1446138