DOI QR코드

DOI QR Code

Building Triketide α-Pyrone-Producing Yeast Platform Using Heterologous Expression of Sporopollenin Biosynthetic Genes

  • Kim, Sung Soo (Biomaterial Laboratory, Samsung Advanced Institute of Technology)
  • Received : 2015.06.08
  • Accepted : 2015.07.24
  • Published : 2015.11.28

Abstract

Sporopollenin is a poorly characterized mixed aliphatic and aromatic polymer with ester and ether linkages. Recent studies have reported that α-pyrone polyketide compounds generated by Arabidopsis thaliana, polyketide synthase A (PKSA) and tetraketide α-pyrone reductase 1 (TKPR1), are previously unknown sporopollenin precursors. Here, the yeast Saccharomyces cerevisiae was introduced to test potential sporopollenin biosynthetic pathways in vivo. A PKSA/TKPR1 dual expressor was generated and various chain-length alkyl α-pyrones were identified by GC-MS. The growth rate of the strain containing PKSA/TKPR1 appeared normal. These results indicate that PKSA/TKPR1-expressing yeast would be a starting platform to investigate in vivo sporopollenin metabolism.

Keywords

References

  1. Ahlers F, Bubert H, Steuernagel S, Wiermann R. 2000. The nature of oxygen in sporopollenin from the pollen of Typha angustifolia L. Z Naturforsch. C 55: 129-136. https://doi.org/10.1515/znc-2000-3-401
  2. Ahlers F, Lambert J, Wiermann R. 2003. Acetylation and silylation of piperidine solubilized sporopollenin from pollen of Typha angustifolia L. Z Naturforsch. C 58: 807-811. https://doi.org/10.1515/znc-2003-11-1210
  3. Bubert H, Lambert J, Steuernagel S, Ahlers F, Wiermann R. 2002. Continuous decomposition of sporopollenin from pollen of Typha angustifolia L. by acidic methanolysis. Z Naturforsch. C 57: 1035-1041. https://doi.org/10.1515/znc-2002-11-1214
  4. Colpitts CC, Kim SS, Posehn SE, Jepson C, Kim SY, Wiedemann G, et al. 2011. PpASCL, a moss ortholog of anther-specific chalcone synthase-like enzymes, is a hydroxyalkylpyrone synthase involved in an evolutionarily conserved sporopollenin biosynthesis pathway. New Phytol. 192: 855-868. https://doi.org/10.1111/j.1469-8137.2011.03858.x
  5. de Azevedo Souza C, Kim SS, Koch S, Kienow L, Schneider K, McKim SM, et al. 2009. A novel fatty acyl-CoA synthetase is required for pollen development and sporopollenin biosynthesis in Arabidopsis. Plant Cell 21: 507-525. https://doi.org/10.1105/tpc.108.062513
  6. Dittrich F, Zajonc D, Huhne K, Hoja U, Ekici A, Greiner E, et al. 1998. Fatty acid elongation in yeast - biochemical characteristics of the enzyme system and isolation of elongation-defective mutants. Eur. J. Biochem. 252: 477-485. https://doi.org/10.1046/j.1432-1327.1998.2520477.x
  7. Dobritsa AA, Lei Z, Nishikawa S, Urbanczyk-Wochniak E, Huhman DV, Preuss D, Sumner LW. 2010. LAP5 and LAP6 encode anther-specific proteins with similarity to chalcone synthase essential for pollen exine development in Arabidopsis. Plant Physiol. 153: 937-955. https://doi.org/10.1104/pp.110.157446
  8. Geoffroy P, Legrand M, Fritig B. 1990. Isolation and characterization of a proteinaceous inhibitor of microbial proteinases induced during the hypersensitive reaction of tobacco to tobacco mosaic virus. Mol. Plant Microbe Interact. 3: 327-333. https://doi.org/10.1094/MPMI-3-327
  9. Grienenberger E, Kim SS, Lallemand B, Geoffroy P, Heintz D, Souza Cde A, et al. 2010. Analysis of tetraketide alph-apyrone reductase function in Arabidopsis thaliana reveals a previously unknown, but conserved, biochemical pathway in sporopollenin monomer biosynthesis. Plant Cell 22: 4067-4083. https://doi.org/10.1105/tpc.110.080036
  10. Kim SS, Douglas CJ. 2013. Sporopollenin monomer biosynthesis in Arabidopsis. J. Plant Biol. 56: 1-6. https://doi.org/10.1007/s12374-012-0385-3
  11. Kim SS, Grienenberger E, Lallemand B, Colpitts CC, Kim SY, Souza Cde A, et al. 2010. Lap6/polyketide synthase A and LAP5/polyketide synthase B encode hydroxyalkyl alpha-pyrone synthases required for pollen development and sporopollenin biosynthesis in Arabidopsis thaliana. Plant Cell 22: 4045-4066. https://doi.org/10.1105/tpc.110.080028
  12. Lallemand B, Erhardt M, Heitz T, Legrand M. 2013. Sporopollenin biosynthetic enzymes interact and constitute a metabolon localized to the endoplasmic reticulum of tapetum cells. Plant Physiol. 162: 616-625. https://doi.org/10.1104/pp.112.213124
  13. Mizuuchi Y, Shimokawa Y, Wanibuchi K, Noguchi H, Abe I. 2008. Structure function analysis of novel type III polyketide synthases from Arabidopsis thaliana. Biol. Pharm. Bull. 31: 2205-2210. https://doi.org/10.1248/bpb.31.2205
  14. Qu Y, Easson ML, Froese J, Simionescu R, Hudlicky T, De Luca V. 2015. Completion of the seven-step pathway from tabersonine to the anticancer drug precursor vindoline and its assembly in yeast. Proc. Natl. Acad. Sci. USA 112: 6224-6229. https://doi.org/10.1073/pnas.1501821112
  15. Quilichini TD, Samuels AL, Douglas CJ. 2014. ABCG26-mediated polyketide trafficking and hydroxycinnamoyl spermidines contribute to pollen wall exine formation in Arabidopsis. Plant Cell 26: 4483-4498. https://doi.org/10.1105/tpc.114.130484
  16. Ro DK, Douglas CJ. 2004. Reconstitution of the entry point of plant phenylpropanoid metabolism in yeast (Saccharomyces cerevisiae): implications for control of metabolic flux into the phenylpropanoid pathway. J. Biol. Chem. 279: 2600-2607. https://doi.org/10.1074/jbc.M309951200
  17. Rozema J, Broekman RA, Blokker P, Meijkamp BB, de Bakker N, van de Staaij J, et al. 2001. UV-B absorbance and UV-B absorbing compounds (para-coumaric acid) in pollen and sporopollenin: the perspective to track historic UV-B levels. J. Photochem. Photobiol. B 62: 108-117. https://doi.org/10.1016/S1011-1344(01)00155-5
  18. Scott RJ, Spielman M, Dickinson HG. 2004. Stamen structure and function. Plant Cell 16 (Suppl): S46-S60. https://doi.org/10.1105/tpc.017012
  19. Wang Z, Yeats T, Han H, Jetter R. 2010. Cloning and characterization of oxidosqualene cyclases from Kalanchoe daigremontiana: enzymes catalyzing up to 10 rearrangement steps yielding friedelin and other triterpenoids. J. Biol. Chem. 285: 29703-29712. https://doi.org/10.1074/jbc.M109.098871