DOI QR코드

DOI QR Code

The Effect of Eluent Concentration on the Separation of Nd with Ln-resin Method

란탄 레진법에서 용리액의 농도가 Nd 분리에 미치는 영향

  • Lee, Hyo-Min (Geochemical Analysis Center, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Seung-Gu (Geological Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Tanaka, Tsuyoshi (Center for Chronological Research, Nagoya University)
  • 이효민 (한국지질자원연구원 지질자원분석센터) ;
  • 이승구 (한국지질자원연구원 국토지질연구본부) ;
  • 다나카 쯔요시 (일본 나고야대학교 지구연대센터)
  • Received : 2015.11.24
  • Accepted : 2015.12.17
  • Published : 2015.12.30

Abstract

The rare earth element(REE)s play an important role in understanding of rock formation and evolution because of their similar geochemical behaviors. Sm and Nd are more useful than other REEs because Sm-Nd isotopic system has important applications for geochemical interpretation like age dating and crustal evolution. These studies require a chromatographic technique for Sm and Nd separation from the geological samples. Ln-resin method using 0.25 M HCl as the eluent is widely used for Nd separation. However, this technique has a disadvantage of the poor elemental selectivity that the Nd fraction contains Ce as a tailing of the previous fraction. This technical report is a comparison study on the effect of eluent concentration between 0.25 M HCl and 0.15 M HCl on the separation of Nd with Ln-resin method for improving the technique of Nd separation. The results showed that the separation of Ce and Nd using 0.15M HCl as the eluent was not effective compared to the separation using 0.25 M HCl. In this experiment, we could confirm that the dilution of eluent might not be effective on the high purity separation of Nd with Ln-resin method.

희토류 원소는 암석의 분화과정을 연구하는데 있어서 매우 중요한 자료가 된다. 이 중 Sm, Nd은 암석의 연대측정 및 지각의 진화 연구 등 지구화학적 연구 분야에 유용하게 사용되어지는 원소로, 이를 위해선 고순도 원소 분리가 필수적이다. 그러나 Nd 분리를 위해 널리 사용되고 있는 란탄 레진과 0.25M HCl을 이용한 원소 분리법을 이용할 경우, Ce을 완전히 제거할 수 없었다. 따라서 이 기술보고에서는 Nd을 분리해 내는데 있어서 란탄 레진법을 이용할 경우, 용리액 농도를 0.25M HCl보다 더 희석시킨 0.15M HCl로 변화시켰을 때 Nd과 Ce의 분리가 더 효율적인 지를 비교 검토하고자 하였다. 그 결과, 0.15M HCl의 경우 0.25 M HCl 보다 용리액을 다량으로 사용하면서도 Ce과 Nd의 분리에 있어서는 효과적이지 않았다. 이는 란탄 레진법에서 용리액의 농도를 낮추어도 Nd의 분리 효율이 더 증가되지 않음을 의미한다.

Keywords

References

  1. Aldrich, L.T., Doak, J.B., and Davis, G.L., 1953, The use of ion exchange columns in mineral analysis for age determination. American Journal of Science, 251, 377-387. https://doi.org/10.2475/ajs.251.5.377
  2. Berguland, M. and Wieser, E., 2011, Isotopic composition of the elements 2009 (IUPAC Technical Report). Pure and Applied Chemistry, 83, 397-410. https://doi.org/10.1351/PAC-REP-10-06-02
  3. Bouvier, A., Vervoort, J.D., and Patchett, P.J., 2008, The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters, 273, 48-57. https://doi.org/10.1016/j.epsl.2008.06.010
  4. Caro, G. and Bourdon, B., 2010, Non-chondritic Sm/Nd ratio in the terrestrial planets: consequences for the geochemical evolution of the mantle-crust system. Geochimica et Cosmochimica Acta,74, 3333-3349. https://doi.org/10.1016/j.gca.2010.02.025
  5. Cheong, C-S. and Kwon, S-T., 2010, Calibration of Sm-Nd Mixed Spike by Teflon Powder Method. Journal of Analytical Science and Technology, 1, 30-36. https://doi.org/10.5355/JAST.2010.30
  6. Dickin, A.P., 2005, Radiogenic isotope geology. 2nd ed. Cambridge University Press, 70-100p.
  7. Guo, F., Fan, W., Li, C., Miao, L., Zhao, L., and Li, H., 2010, Sr-Nd-Pb isotope mapping of Mesozoic igneous rocks in NE China: constraints on tectonic framework and Phanerozoic crustal growth. Lithos, 120, 563-578. https://doi.org/10.1016/j.lithos.2010.09.020
  8. Hirahara, Y., Takahashi, T., Miyazaki, T., Vaglarav, B.S., Chang, Q., Kimura, J-I., and Tatsumi, Y., 2009, Precise Nd isotope analysis of igneous rocks using cation exchange chromatography and thermal ionization mass spectrometry(TIMS). JAMSTEC-R IFREE Special Issue, 65-72.
  9. Lee, S-G., Lee, H-M., Asahara, Y., Lee, M-J., Choo, M.K., and Lee, S.R., 2012, Ln-resin and HIBA Method for La-Ce and Sm-Nd Isotope Measurement. Journal of the Petrological Society of Korea, 21, 4, 431-439. https://doi.org/10.7854/JPSK.2012.21.4.431
  10. Makishima, A., Nath, B.N., and Nakamura, E., 2008, New sequential separation procedure for Sr, Nd and Pb isotope ratio measurement in geological material using MC-ICPMS and TIMS. Geochemical Journal, 42, 237-246. https://doi.org/10.2343/geochemj.42.237
  11. Mikova, J. and Denkova, P., 2007, Modified chromatographic separation scheme for Sr and Nd isotope analysis in geological silicate samples. Journal of Geosciences, 52, 221-226.
  12. Murphy, D.T., Brandon, A.D., Debaille, V., Burgess, R., and Ballentine, C., 2010, In search of a hidden long-term isolated sub-chondritic $^{142}Nd/^{144}Nd$ reservoir in the deep mantle: Implications for the Nd isotope systematics of the Earth. Geochimica et Cosmochimica Acta, 74, 738-750. https://doi.org/10.1016/j.gca.2009.10.005
  13. Pin, C. and Zalduegui, J.F.S., 1997, Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: Application to isotopic analyses of silicate rocks. Analytica Chimica Acta, 339, 79-89. https://doi.org/10.1016/S0003-2670(96)00499-0
  14. Raczek, I., Jochum, K.P., and Hofmann, A.W., 2003, Neodymium and strontium isotope data for USGS reference materials BCR-1, BCR-2, BHVO-1, BHVO-2, AGV-1, GSP-1, GSP-2 and eight MPI-DING reference glasses. Geostandards Newsletter, 27, 173-179. https://doi.org/10.1111/j.1751-908X.2003.tb00644.x
  15. Richard, P., Shimizu, N., and Allegre, C.J., 1976, $^{143}Nd/^{146}Nd$, A natural tracer: An application to oceanic basalts. Earth and Planetary Science Letters. 31, 269-278. https://doi.org/10.1016/0012-821X(76)90219-3
  16. Rollinson, H.R., 1993, Using geochemical data: evaluation, presentation, interpretation. Longman, UK, 133-134p
  17. Tanaka, T., Shimizu, H., Kawata, Y., and Masuda, A., 1987, Combined La-Ce and Sm-Nd isotope systematics in petrogenetic studies. Nature 327, 113-117. https://doi.org/10.1038/327113a0
  18. Tanimizu, M. and Tanaka, T., 2002, Coupled Ce-Nd isotope systematics and rare earth elements differentiation of the moon. Geochimica et Cosmochimica Acta, 66, 4007-4014. https://doi.org/10.1016/S0016-7037(02)00961-4
  19. Tazoe, H., Obata, H., Amakawa, H., Nozaki, Y., and Gamo, T., 2007, Precise determination of the cerium isotopic compositions of surface seawater in the Northwest Pacific Ocean and Tokyo Bay. Marine Chemistry, 103, 1-14. https://doi.org/10.1016/j.marchem.2006.05.008
  20. Yang, Y-h., Zhang, H-f., Chu, Z-y., Xie, L-w., and Wu, Fh., 2010, Combined chemical separation of Lu, Hf, Rb, Sr, Sm and Nd from a single rock digest and precise and accurate isotope determinations of Lu-Hf, Rb-Sr and Sm-Nd isotope systems using Multi-Collector ICP-MS and TIMS. 290, 120-126. https://doi.org/10.1016/j.ijms.2009.12.011