참고문헌
- Ali, F.A., Connolly, R. and Sullivan, P.J.E. (1996), "Spalling of high strength concrete at elevated temperatures", J. Appl. Fire Sci., 6(1), 3-14. https://doi.org/10.2190/29U1-DTKK-42A5-DQQL
- Ayub, T., Shafiq, N. and Nuruddin, M.F. (2014), "Mechanival properties of high performance concrete reinforced with basalt fibres", Procedia Eng., 77, 131-139. https://doi.org/10.1016/j.proeng.2014.07.029
- Borhan, T.M. (2013), "Thermal and mechanical properties of basalt fibre reinforced concrete", Int. scholarly Sci. Res. Innov., 7(4), 712-715.
- Chen, B. and Liu, J. (2004), "Residual strength of hybrid-fiber-reinforced high-strength concrete after exposure to high temperatures", Cement Concrete Res., 34(6), 1065-1069. https://doi.org/10.1016/j.cemconres.2003.11.010
- Dias, D.P. and Thaumaturgo, C. (2005), "Fracture toughness of geopolymeric concretes reinforced with basalt fibers", Cement Concrete Comp., 27(1), 49-54. https://doi.org/10.1016/j.cemconcomp.2004.02.044
- Dugenci, O., Haktanir, T. and Altun, F. (2015), "Experimental research for the effect of high temperature on the mechanical properties of steel fibre reinforced concrete", Constr. Build. Mater. 75, 82-88. https://doi.org/10.1016/j.conbuildmat.2014.11.005
- EN 1994-1-2 (2003), Design of composite steel and concrete structures-part 1-2: general rules - structural fire design, Eurocodes.
- Ezeldin, A.S. and Balaguru, P.N. (1992), "Normal-and high-strength fiber-reinforced concrete under compression", J. Mater. Civil Eng., 4(4), 415-429. https://doi.org/10.1061/(ASCE)0899-1561(1992)4:4(415)
- Fanella, D.A. and Naaman, A.E. (1985), "Stress-strain properties of fiber reinforced mortar in compression", ACI J., 82(4), 475-483.
- Jiang, C., Fan, K., Wu, F. and Chen, D. (2014), "Experimental study on the mechanical properties and microstructure of chopped basalt fibre reinforced concrete", Mater. Des., 58, 187-193. https://doi.org/10.1016/j.matdes.2014.01.056
- Kim, J. and Lee, G.P. (2015), "Evaluation of mechanical properties of steel-fibre-reinforced concrete exposed to high temperatures by double-punch test", Constr. Build. Mater., 79, 182-191. https://doi.org/10.1016/j.conbuildmat.2015.01.042
- Ma, J., Qiu, X., Cheng, L. and Wang, Y. (2010), "Experimental research on the fundamental mechanical properties of presoaked basalt fibre concrete", Proceedings of the 5th International Conference on FRP Composites in Civil Engineering, Beijing, China.
- Poon, C.S., Shui, Z.H. and Lam, L. (2004), "Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures", Cement Concrete Res., 34(12), 2215-2222. https://doi.org/10.1016/j.cemconres.2004.02.011
- Shaikh, F.U.A. and Vimonsatit, V. (2015), "Compressive strength of fly-ash-based geopolymer concrete at elevated temperatures", Fire Mater., 39(2), 174-188. https://doi.org/10.1002/fam.2240
- Stockmann, G.J., Wolff-Boenisch, D., Bovet, N., Gislason, S.R. and Oelkers, E.H. (2014), "The role of silicate surfaces on calcite precipitation kinetics", Geochimica et Cosmochimica Acta, 135, 231-250. https://doi.org/10.1016/j.gca.2014.03.015
- Suhaendi, S.L. and Horiguchi, T. (2006), "Effect of short fibers on residual permeability and mechanical properties of hybrid fibre reinforced high strength concrete after heat exposition", Cement Concrete Res., 36(9), 1672-1678. https://doi.org/10.1016/j.cemconres.2006.05.006
- Wetzig, V. (2002), "The fire resistance of various types or air placed concrete", 4th International Symposium on Sprayed Concrete, 352, Davos, Switzerland, September.
피인용 문헌
- Evaluation of the influence of creep and shrinkage determinants on column shortening in mid-rise buildings vol.5, pp.2, 2015, https://doi.org/10.12989/acc.2017.5.2.155
- Residual strength capacity of fire-exposed circular concrete-filled steel tube stub columns vol.6, pp.5, 2015, https://doi.org/10.12989/acc.2018.6.5.485
- Fire resistance evaluation of fiber-reinforced cement composites using cellulose nanocrystals vol.8, pp.4, 2019, https://doi.org/10.12989/acc.2019.8.4.311
- Prediction of Explosive Spalling of Heated Steel Fiber Reinforced Concrete using Artificial Neural Networks vol.18, pp.5, 2015, https://doi.org/10.3151/jact.18.227
- Behavior of UHPC-RW-RC wall panel under various temperature and humidity conditions vol.9, pp.5, 2015, https://doi.org/10.12989/acc.2020.9.5.459
- Confinement effectiveness of CFRP strengthened concrete cylinders subjected to high temperatures vol.9, pp.6, 2020, https://doi.org/10.12989/acc.2020.9.6.529
- Effect of hybrid polypropylene-steel fibres on strength characteristics of UHPFRC vol.10, pp.1, 2015, https://doi.org/10.12989/acc.2020.10.1.001
- Experimental and analytical study of the mechanical and flexural behavior of hybrid fiber concretes vol.28, pp.None, 2020, https://doi.org/10.1016/j.istruc.2020.10.014
- Mechanical Properties and Design of Concrete with Hybrid Steel and Basalt Fiber vol.264, pp.None, 2021, https://doi.org/10.1051/e3sconf/202126402030
- Thermomechanical behavior of alkali-activated slag/fly ash composites with PVA fibers exposed to elevated temperatures vol.11, pp.1, 2015, https://doi.org/10.12989/acc.2021.11.1.011
- A Method for the Design of Concrete with Combined Steel and Basalt Fiber vol.11, pp.19, 2015, https://doi.org/10.3390/app11198850