DOI QR코드

DOI QR Code

NFATc Mediates Lipopolysaccharide and Nicotine-Induced Expression of iNOS and COX-2 in Human Periodontal Ligament Cells

사람 치주인대세포에서 Lipopolysaccharide와 니코틴으로 유도된 iNOS와 COX-2 발현에 NFATc의 관여

  • Lee, Sang-Im (Department of Dental Hygiene, School of Health Sciences, Dankook University) ;
  • Yu, Ji-Su (Department of Dental Hygiene, Gumi College)
  • 이상임 (단국대학교 보건과학대학 치위생학과) ;
  • 유지수 (구미대학교 치위생과)
  • Received : 2015.11.02
  • Accepted : 2015.11.11
  • Published : 2015.12.31

Abstract

Although nuclear factor of activated T cell (NFAT) plays a key role in inflammation, its anti-inflammatory effects and mechanism of action in periodontitis are still unknown. This study aimed to identify the effects of NFAT on the proinflammatory mediators activated by lipopolysaccharide (LPS) plus nicotine stimulation in human periodontal ligament cells (hPDLCs). The production of nitric oxide (NO) and prostaglandin $E_2(PGE_2)$ was evaluated using Griess reagent and an enzyme immunoassay, respectively. The expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and NFAT proteins was evaluated by Western blot analysis. LPS plus nicotine synergistically induced the production of NO and $PGE_2$ and increased the protein expression of iNOS, COX-2 and NFAT. Treatment with an NFAT inhibitor blocked the LPS plus nicotine-stimulated NO and $PGE_2$ release as well as the expression of iNOS and COX-2. Our data suggest that the LPS plus nicotine-induced inflammatory effects on hPDLCs may act through a novel mechanism involving the action of NFAT. Thus, NFAT may provide a potential therapeutic target for the treatment of periodontal disease associated with smoking and dental plaque.

숙주 면역 반응과 면역 체계는 치주 질환에 대한 개인의 감수성의 주요 원인이다. 세균 감염과 흡연은 치주 조직의 파괴의 원인과 진행에 관여하는 중요한 환경 위험 요인이다. 따라서, 본 연구는 사람 치주인대세포에서 LPS와 니코틴이 전염증성 사이토카인인 iNOS/COX-2의 발현과 NO/$PGE_2$ 생산에 미치는 영향을 알아보고 NFATc1가 어떤 기전으로 항염작용을 하는지 밝히고자 하였다. LPS와 니코틴을 처리한 사람 치주인대세포에서 iNOS/COX-2의 발현과 함께 NO/$PGE_2$ 생산은 증가되었다. NFATc1 inhibitor인 CsA는 LPS와 니코틴에 의해 유도되는 iNOS/COX-2의 발현과 함께 NO/$PGE_2$ 생산을 감소시켰다. 이러한 연구 결과로 볼 때, NFAT signaling pathway가 LPS와 니코틴에 의한 iNOS/COX-2의 발현을 조절하여 NO/$PGE_2$ 매개 염증에 대해 방어할 수 있다고 생각된다.

Keywords

References

  1. McDevitt MJ, Wang HY, Knobelman C, et al.: Interleukin-1 genetic association with periodontitis in clinical practice. J Periodontol 71: 156-163, 2000. https://doi.org/10.1902/jop.2000.71.2.156
  2. Noguchi K, Ishikawa I: The roles of cyclooxygenase-2 and prostaglandin E2 in periodontal disease. Periodontol 2000 43: 85-101, 2007. https://doi.org/10.1111/j.1600-0757.2006.00170.x
  3. Xie Q, Nathan C: The high-output nitric oxide pathway: role and regulation. J Leukoc Biol 56: 576-582, 1994. https://doi.org/10.1002/jlb.56.5.576
  4. Lee SH, Soyoola E, Chanmugam P, et al.: Selective expression of mitogen-inducible cyclooxygenase in macrophages stimulated with lipopolysaccharide. J Biol Chem 267: 25934-25938, 1992.
  5. Hwang SJ, Kim YK, Yang SJ, Cho HJ: Influence of smoking on matrix metalloproteinase-9 in the gingival crevicular fluid. J Dent Hyg Sci 11: 339-344, 2011.
  6. Zhong Y, Slade GD, Beck JD, Offenbacher S: Gingival crevicular fluid interleukin-$1{\beta}$, prostaglandin E2 and periodontal status in a community population. J Clin Periodontol 34: 285-293, 2007. https://doi.org/10.1111/j.1600-051X.2007.01057.x
  7. Cochran DL: Inflammation and bone loss in periodontal disease. J Periodontol 79: 1569-1576, 2008. https://doi.org/10.1902/jop.2008.080233
  8. Yamaji Y, Kubota T, Sasaguri K, Sato S, Suzuki Y, Kumada H: Inflammatory cytokine gene expression in human periodontal ligament fibroblasts treated with bacterial lipopolysaccharides. Infect Immun 63: 3576-3581, 1995.
  9. Park JY, Kim HS, Kook JK: Antimicrobial effect of (-)-epigalocatechin on Fusobacterium nucleatum, Prevotella intermedia and Porphyromonas gingivalis. J Dent Hyg Sci 10: 161-165, 2010.
  10. Jonsson D, Nebel D, Bratthall G, Nilsson BO: The human periodontal ligament cell: a fibroblast-like cell acting as an immune cell. J Periodontal Res 46: 153-157, 2011. https://doi.org/10.1111/j.1600-0765.2010.01331.x
  11. Bregstrom J: Tobacco smoking and risk of periodontal disease. J Clin Periodontol 30: 107-13, 2003. https://doi.org/10.1034/j.1600-051X.2003.00272.x
  12. Johnson GK, Guthmiller JM: The impact of cigarette smoking on periodontal disease and treatment. Periodontol 2000 44: 178-194, 2007. https://doi.org/10.1111/j.1600-0757.2007.00212.x
  13. Cuff MJ, McQuade MJ, Scheidt MJ, Sutherland DE, Van Dyke TE: The presence of nicotine on root surfaces of periodontally diseased teeth in smokers. J Periodontol 60: 564-569, 1989. https://doi.org/10.1902/jop.1989.60.10.564
  14. McGuire JR, McQuade MJ, Rossmann JA, et al.: Nicotine in saliva and gingival crevicular fluid of smokers with periodontal disease. J Periodontol 60:176-181, 1989. https://doi.org/10.1902/jop.1989.60.4.176
  15. Shaw JP, Utz PJ, Durand DB, Toole JJ, Emmel EA, Crabtree GR: Identification of a putative regulator of early T-cell activation genes. Science 241: 202-205, 1988. https://doi.org/10.1126/science.3260404
  16. de la Pompa JL, Timmerman LA, Takimoto H, et al.: Role of the NF-ATc transcription factor in morphogenesis of cardiac valves and septum. Nature 392: 182-186, 1998. https://doi.org/10.1038/32419
  17. Mercurio AM, Rabinovitz I: Towards a mechanistic understanding of tumor invasion-lessons from the ${\alpha}$6${\beta}$4 integrin Semin. Cancer Biol 11: 129-141, 2001. https://doi.org/10.1006/scbi.2000.0364
  18. Plyte S, Boncristiano M, Fattori E, et al.: Identification and characterization of a novel nuclear factor of activated T-cells-1 isoform expressed in mouse brain. J Biol Chem 276: 14350-14358, 2001. https://doi.org/10.1074/jbc.M007854200
  19. Rinne A, Banach K, Blatter LA: Regulation of nuclear factor of activated T cells (NFAT) in vascular endothelial cells. J Mol Cell Cardiol 47: 400-410, 2009. https://doi.org/10.1016/j.yjmcc.2009.06.010
  20. Nilsson LM, Nilsson-Ohman J, Zetterqvist AV, Gomez MF: Nuclear factor of activated T-cells transcription factors in the vasculature: the good guys or the bad guys? Curr Opin Lipidol 19: 483-490, 2008. https://doi.org/10.1097/MOL.0b013e32830dd545
  21. Kitagawa M, Kudo Y, Iizuka S, et al.: Effect of F-spondin on cementoblastic differentiation of human periodontal ligament cells. Biochem Biophys Res Commun 349: 1050-1056, 2006. https://doi.org/10.1016/j.bbrc.2006.08.142
  22. Chang YC, Hsieh YS, Lii CK, Huang FM, Tai KW, Chou MY: Induction of cfos expression by nicotine in human periodontal ligament fibroblasts is related to cellular thiol levels. J Periodontal Res 38: 44-50, 2003. https://doi.org/10.1034/j.1600-0765.2003.01642.x
  23. Chang YC, Tsai CH, Yang SH, Liu CM, Chou MY: Induction of cyclooxygenase-2 mRNA and protein expression in human gingival fibroblasts stimulated with nicotine. J Periodontal Res 38: 496-501, 2003. https://doi.org/10.1034/j.1600-0765.2003.00681.x
  24. Chang YC, Lai CC, Lin LF, Ni WF, Tsai CH: The upregulation of heme oxygenase-1 expression in human gingival fibroblasts stimulated with nicotine. J Periodontal Res 40: 252-257, 2005. https://doi.org/10.1111/j.1600-0765.2005.00804.x
  25. Choi JI, Nakagawa T, Yamada S, Takazoe I, Okuda K: Clinical, microbiological and immunological studies on recurrent periodontal disease. J Clin Periodontol 17: 426-434, 1990. https://doi.org/10.1111/j.1600-051X.1990.tb02341.x
  26. Yamaji Y, Kubota T, Sasaguri K, et al.: Inflammatory cytokine gene expression in human periodontal ligament fibroblasts stimulated with bacterial lipopolysaccharides. Infect Immun 63: 3576-3581, 1995.
  27. Chang YC, Yang SF, Lai CC, Liu JY, Hsieh YS: Regulation of matrix metalloproteinase production by cytokines, pharmacological agents and periodontal ligament fibroblast cultures. J Periodont Res 37: 196-203, 2002. https://doi.org/10.1034/j.1600-0765.2002.00663.x
  28. Jeong GS, Lee SH, Jeong SN, Kim YC, Kim EC: Antiinflammatory effects of apigenin on nicotine- and lipopolysaccharide-stimulated human periodontal ligament cells via heme oxygenase-1. Int Immunopharmacol 12: 1374-1380, 2009.
  29. Katono T, Kawato T, Tanabe N, et al.: Effects of nicotine and lipopolysaccharide on the expression of matrix metalloproteinases, plasminogen activators, and their inhibitors in human osteoblasts. Arch Oral Biol 54: 146-155, 2009. https://doi.org/10.1016/j.archoralbio.2008.09.017
  30. Arron JR, Winslow MM, Polleri A, et al.: NFAT dysregulation by increased dosage of DSCR1 and DYRK1A on chromosome 21. Nature 441: 595-600, 2006. https://doi.org/10.1038/nature04678
  31. Beals CR, Clipstone NA, Ho SN, Crabtree GR: Nuclear localization of NF-ATc by a calcineurin-dependent, cyclosporinsensitive intramolecular interaction. Genes Dev 11: 824-834, 1997. https://doi.org/10.1101/gad.11.7.824
  32. Graef IA, Chen F, Crabtree GR: NFAT signaling in vertebrate development. Curr Opin Genet Dev 11: 505-512, 2001. https://doi.org/10.1016/S0959-437X(00)00225-2
  33. Mancini M, Toker A: NFAT proteins: emerging roles in cancer progression. Nat Rev Cancer 9: 810-820, 2009. https://doi.org/10.1038/nrc2735
  34. Graef IA, Chen F, Chen L, KuoA, Crabtree GR: Signals transduced by Ca(2+)/calcineurin and NFATc3/c4 pattern the developing vasculature. Cell 105: 863-875, 2001. https://doi.org/10.1016/S0092-8674(01)00396-8
  35. Graef IA, Wang F, Charron F, et al.: Neurotrophins and netrins require calcineurin/NFAT signaling to stimulate outgrowth of embryonic axons. Cell 113: 657-670, 2003. https://doi.org/10.1016/S0092-8674(03)00390-8
  36. Takayanagi H: The role of NFAT in osteoclast formation. Ann NY Acad Sci 1116: 227-237, 2007. https://doi.org/10.1196/annals.1402.071
  37. Koga T, Matsui Y, Asagiri M, et al.: NFAT and Osterix cooperatively regulate bone formation. Nat Med 11: 880-885, 2005. https://doi.org/10.1038/nm1270
  38. Lee SI: The role of NFATc1 on osteoblastic differentiation in human periodontal ligament cells. J Dent Hyg Sci 15: 488-494, 2015. https://doi.org/10.17135/jdhs.2015.15.4.488
  39. Orcel P, Bielakoff J, Modrowski D, Miravet L, de Vernejoul MC: Cyclosporin A induces in vivo inhibition of resorption and stimulation of formation in rat bone. J Bone Miner Res 4: 387-391, 1989
  40. Mena MP, Papiewska-Pajak I, Przygodzka P, et al.: NFAT2 regulates COX-2 expression and modulates the integrin repertoire in endothelial cells at the crossroads of angiogenesis and inflammation. Exp Cell Res 324: 124-136, 2014. https://doi.org/10.1016/j.yexcr.2014.03.008

Cited by

  1. L. flower prevents UVB-induced photodamage in human dermal fibroblasts by regulating the MAPK/AP-1, NFAT, and Nrf2 signaling pathways vol.120, pp.1, 2018, https://doi.org/10.1002/jcb.27417
  2. JAK/STAT Pathway Modulates on Porphyromonas gingivalis Lipopolysaccharide- and Nicotine-Induced Inflammation in Osteoblasts vol.17, pp.1, 2015, https://doi.org/10.17135/jdhs.2017.17.1.81
  3. Baicalein Treatment Promotes Osteoblast Proliferation and Osteogenic Differentiation through Activation of Immediate Early Response 3 vol.19, pp.4, 2015, https://doi.org/10.17135/jdhs.2019.19.4.254
  4. Camu-Camu Fruit Extract Inhibits Oxidative Stress and Inflammatory Responses by Regulating NFAT and Nrf2 Signaling Pathways in High Glucose-Induced Human Keratinocytes vol.26, pp.11, 2021, https://doi.org/10.3390/molecules26113174